Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

G0 Electronics and Data Acquisition (Forward-Angle Measurements)

Journal Article ·
OSTI ID:902174

The G$^0$ parity-violation experiment at Jefferson Lab (Newport News, VA) is designed to determine the contribution of strange/anti-strange quark pairs to the intrinsic properties of the proton. In the forward-angle part of the experiment, the asymmetry in the cross section was measured for $$\vec{e}p$$ elastic scattering by counting the recoil protons corresponding to the two beam-helicity states. Due to the high accuracy required on the asymmetry, the G$^0$ experiment was based on a custom experimental setup with its own associated electronics and data acquisition (DAQ) system. Highly specialized time-encoding electronics provided time-of-flight spectra for each detector for each helicity state. More conventional electronics was used for monitoring (mainly FastBus). The time-encoding electronics and the DAQ system have been designed to handle events at a mean rate of 2 MHz per detector with low deadtime and to minimize helicity-correlated systematic errors. In this paper, we outline the general architecture and the main features of the electronics and the DAQ system dedicated to G$^0$ forward-angle measurements.

Research Organization:
Thomas Jefferson National Accelerator Facility, Newport News, VA
Sponsoring Organization:
USDOE - Office of Energy Research (ER)
DOE Contract Number:
AC05-84ER40150
OSTI ID:
902174
Report Number(s):
JLAB-PHY-07-622; DOE/ER/40150-4260; nucl-ex/0703026
Country of Publication:
United States
Language:
English

Similar Records

Asymmetries analysis from the forward angle part of the G0 experiment
Conference · Fri Oct 01 00:00:00 EDT 2004 · OSTI ID:842640

The G0 experiment
Conference · Fri Jun 01 00:00:00 EDT 2007 · OSTI ID:955725

The G0 Experiment
Journal Article · Wed Jun 13 00:00:00 EDT 2007 · AIP Conference Proceedings · OSTI ID:21064018