skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Feasibility Study of Carbon Sequestration Through Reforestation in the Chesapeake Bay Watershed of Virginia

Abstract

The Chesapeake Rivers conservation area encompasses approximately 2,000 square miles of agricultural and forest lands in four Virginia watersheds that drain to the Chesapeake Bay. Consulting a time series of classified Landsat imagery for the Chesapeake Rivers conservation area, the project team developed a GIS-based protocol for identifying agricultural lands that could be reforested, specifically agricultural lands that had been without forest since 1990. Subsequent filters were applied to the initial candidate reforestation sites, including individual sites > 100 acres and sites falling within TNC priority conservation areas. The same data were also used to produce an analysis of baseline changes in forest cover within the study period. The Nature Conservancy and the Virginia Department of Forestry identified three reforestation/management models: (1) hardwood planting to establish old-growth forest, (2) loblolly pine planting to establish working forest buffer with hardwood planting to establish an old-growth core, and (3) loblolly pine planting to establish a working forest. To assess the relative carbon sequestration potential of these different strategies, an accounting of carbon and total project costs was completed for each model. Reforestation/management models produced from 151 to 171 tons carbon dioxide equivalent per acre over 100 years, with present value costs ofmore » from $2.61 to $13.28 per ton carbon dioxide equivalent. The outcome of the financial analysis was especially sensitive to the land acquisition/conservation easement cost, which represented the most significant, and also most highly variable, single cost involved. The reforestation/management models explored all require a substantial upfront investment prior to the generation of carbon benefits. Specifically, high land values represent a significant barrier to reforestation projects in the study area, and it is precisely these economic constraints that demonstrate the economic additionality of any carbon benefits produced via reforestation--these are outcomes over and above what is currently possible given existing market opportunities. This is reflected and further substantiated in the results of the forest cover change analysis, which demonstrated a decline in area of land in forest use in the study area for the 1987/88-2001 period. The project team collected data necessary to identify sites for reforestation in the study area, environmental data for the determining site suitability for a range of reforestation alternatives and has identified and addressed potential leakage and additionality issues associated with implementing a carbon sequestration project in the Chesapeake Rivers Conservation Area. Furthermore, carbon emissions reductions generated would have strong potential for recognition in existing reporting systems such as the U.S. Department of Energy 1605(b) voluntary reporting requirements and the Chicago Climate Exchange. The study identified 384,398 acres on which reforestation activities could potentially be sited. Of these candidate sites, sites totaling 26,105 acres are an appropriate size for management (> 100 acres) and located in priority conservation areas identified by The Nature Conservancy. Total carbon sequestration potential of reforestation in the study area, realized over a 100 year timeframe, ranges from 58 to 66 million tons of carbon dioxide equivalent, and on the priority sites alone, potential for carbon sequestration approaches or exceeds 4 million tons of carbon dioxide equivalent. In the absence of concerted reforestation efforts, coupled with policy strategies, the region will likely face continued declines in forest land.« less

Authors:
; ; ;
Publication Date:
Research Org.:
Nature Conservancy
Sponsoring Org.:
USDOE
OSTI Identifier:
901293
DOE Contract Number:
FC26-01NT41151
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES; CARBON DIOXIDE; CARBON SEQUESTRATION; CHESAPEAKE BAY; ECONOMICS; FORESTRY; RESOURCE MANAGEMENT; WATERSHEDS; REVEGETATION

Citation Formats

Andy Lacatell, David Shoch, Bill Stanley, and Zoe Kant. Feasibility Study of Carbon Sequestration Through Reforestation in the Chesapeake Bay Watershed of Virginia. United States: N. p., 2007. Web. doi:10.2172/901293.
Andy Lacatell, David Shoch, Bill Stanley, & Zoe Kant. Feasibility Study of Carbon Sequestration Through Reforestation in the Chesapeake Bay Watershed of Virginia. United States. doi:10.2172/901293.
Andy Lacatell, David Shoch, Bill Stanley, and Zoe Kant. Thu . "Feasibility Study of Carbon Sequestration Through Reforestation in the Chesapeake Bay Watershed of Virginia". United States. doi:10.2172/901293. https://www.osti.gov/servlets/purl/901293.
@article{osti_901293,
title = {Feasibility Study of Carbon Sequestration Through Reforestation in the Chesapeake Bay Watershed of Virginia},
author = {Andy Lacatell and David Shoch and Bill Stanley and Zoe Kant},
abstractNote = {The Chesapeake Rivers conservation area encompasses approximately 2,000 square miles of agricultural and forest lands in four Virginia watersheds that drain to the Chesapeake Bay. Consulting a time series of classified Landsat imagery for the Chesapeake Rivers conservation area, the project team developed a GIS-based protocol for identifying agricultural lands that could be reforested, specifically agricultural lands that had been without forest since 1990. Subsequent filters were applied to the initial candidate reforestation sites, including individual sites > 100 acres and sites falling within TNC priority conservation areas. The same data were also used to produce an analysis of baseline changes in forest cover within the study period. The Nature Conservancy and the Virginia Department of Forestry identified three reforestation/management models: (1) hardwood planting to establish old-growth forest, (2) loblolly pine planting to establish working forest buffer with hardwood planting to establish an old-growth core, and (3) loblolly pine planting to establish a working forest. To assess the relative carbon sequestration potential of these different strategies, an accounting of carbon and total project costs was completed for each model. Reforestation/management models produced from 151 to 171 tons carbon dioxide equivalent per acre over 100 years, with present value costs of from $2.61 to $13.28 per ton carbon dioxide equivalent. The outcome of the financial analysis was especially sensitive to the land acquisition/conservation easement cost, which represented the most significant, and also most highly variable, single cost involved. The reforestation/management models explored all require a substantial upfront investment prior to the generation of carbon benefits. Specifically, high land values represent a significant barrier to reforestation projects in the study area, and it is precisely these economic constraints that demonstrate the economic additionality of any carbon benefits produced via reforestation--these are outcomes over and above what is currently possible given existing market opportunities. This is reflected and further substantiated in the results of the forest cover change analysis, which demonstrated a decline in area of land in forest use in the study area for the 1987/88-2001 period. The project team collected data necessary to identify sites for reforestation in the study area, environmental data for the determining site suitability for a range of reforestation alternatives and has identified and addressed potential leakage and additionality issues associated with implementing a carbon sequestration project in the Chesapeake Rivers Conservation Area. Furthermore, carbon emissions reductions generated would have strong potential for recognition in existing reporting systems such as the U.S. Department of Energy 1605(b) voluntary reporting requirements and the Chicago Climate Exchange. The study identified 384,398 acres on which reforestation activities could potentially be sited. Of these candidate sites, sites totaling 26,105 acres are an appropriate size for management (> 100 acres) and located in priority conservation areas identified by The Nature Conservancy. Total carbon sequestration potential of reforestation in the study area, realized over a 100 year timeframe, ranges from 58 to 66 million tons of carbon dioxide equivalent, and on the priority sites alone, potential for carbon sequestration approaches or exceeds 4 million tons of carbon dioxide equivalent. In the absence of concerted reforestation efforts, coupled with policy strategies, the region will likely face continued declines in forest land.},
doi = {10.2172/901293},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Thu Mar 01 00:00:00 EST 2007},
month = {Thu Mar 01 00:00:00 EST 2007}
}

Technical Report:

Save / Share:
  • Analyzes the environmental effects of population growth upon the Bay and recommends a series of actions to concentrate development in suitable areas, protect sensitive areas, direct growth to existing population centers in rural areas and protect resource areas, establish stewardship policies, conserve resources, and establish development and conservation trust funds.
  • Policies and guidelines intended to guide the location, design, construction, operation, and maintenance of new developments in such a manner as to preserve the quality of the Chesapeake Bay and its tributaries.
  • There is a general consensus that the quality of the Chesapeake Bay aquatic environment is rapidly deteriorating, and that nutrient enrichment is the primary cause. This report was developed to provide readers with an overview of the various technologies that have been used for the control of nutrients from both point (wastewater treatment plants) and nonpoint (stormwater, farm and urban runoff) sources of pollution, and to assist them in the selection or appropriate technology for particular situations. Information on anticipated removal efficiencies, potential installational and operational difficulties, and economics has been provided to facilitate the selection process.
  • A survey of the chemistry of 23 streams within the Chesapeake Bay watershed was conducted in the spring of 1983 to determine whether a potential for changes in water chemistry due to atmospheric inputs of acidic materials exists in any of these streams. Sampling was conducted weekly through the months of March and April. Three streams were identified as being likely affected by acid inputs due to relatively high H(+) and SO4(-2) concentrations and low alkalinities: Stockett's Run, Lyons Creek, and Muddy Creek. Elevated dissolved aluminum concentrations were observed in some Eastern Shore streams and are likely related to themore » predominance of clay soils in their watersheds.« less
  • The concept behind a riparian buffer is to put the natural benefits and functions of riparian areas to work in nonpoint pollution control. These linear strips of forest can serve as the last line of defense from the activities we undertake in managing the land, such as agriculture, grazing and urban development. Unlike most best management practices, the high value of forests to wildlife and fish, helps buffers accomplish habitat benefits at the same time they improve their water quality.