skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: IMPROVING THERMAL PERFORMANCE OF RADIOACTIVE MATERIAL DRUM TYPEPACKAGES BY USING HEAT PIPES

Abstract

This paper presents a feasibility study to improve thermal loading of existing radioactive material packages by using heat pipes. The concept could be used to channel heat in certain directions and dissipate to the environment. The concept is applied to a drum type package because the drum type packages are stored and transported in an upright position. This orientation is suitable for heat pipe operation that could facilitate the heat pipe implementation in the existing well proven package designs or in new designs where thermal loading is high. In this position, heat pipes utilize gravity very effectively to enhance heat flow in the upward direction Heat pipes have extremely high effective thermal conductivity that is several magnitudes higher than the most heat conducting metals. In addition, heat pipes are highly unidirectional so that the effective conductivity for heat transfer in the reverse direction is greatly reduced. The concept is applied to the 9977 package that is currently going through the DOE certification review. The paper presents computer simulations using typical off-the-shelf heat pipe available configurations and performance data for the 9977 package. A path forward is outlined for implementing the concepts for further study and prototype testing.

Authors:
Publication Date:
Research Org.:
SRS
Sponsoring Org.:
USDOE
OSTI Identifier:
900560
Report Number(s):
WSRC-STI-2007-00101
TRN: US0702294
DOE Contract Number:
DE-AC09-96SR18500
Resource Type:
Conference
Resource Relation:
Conference: ASME PVP 2007 / CREEP 8
Country of Publication:
United States
Language:
English
Subject:
42 ENGINEERING; CONTAINERS; RADIOACTIVE MATERIALS; THERMAL CONDUCTIVITY; HEAT PIPES; FEASIBILITY STUDIES; HEAT TRANSFER; COMPUTERIZED SIMULATION

Citation Formats

Gupta, N. IMPROVING THERMAL PERFORMANCE OF RADIOACTIVE MATERIAL DRUM TYPEPACKAGES BY USING HEAT PIPES. United States: N. p., 2007. Web.
Gupta, N. IMPROVING THERMAL PERFORMANCE OF RADIOACTIVE MATERIAL DRUM TYPEPACKAGES BY USING HEAT PIPES. United States.
Gupta, N. Tue . "IMPROVING THERMAL PERFORMANCE OF RADIOACTIVE MATERIAL DRUM TYPEPACKAGES BY USING HEAT PIPES". United States. doi:. https://www.osti.gov/servlets/purl/900560.
@article{osti_900560,
title = {IMPROVING THERMAL PERFORMANCE OF RADIOACTIVE MATERIAL DRUM TYPEPACKAGES BY USING HEAT PIPES},
author = {Gupta, N},
abstractNote = {This paper presents a feasibility study to improve thermal loading of existing radioactive material packages by using heat pipes. The concept could be used to channel heat in certain directions and dissipate to the environment. The concept is applied to a drum type package because the drum type packages are stored and transported in an upright position. This orientation is suitable for heat pipe operation that could facilitate the heat pipe implementation in the existing well proven package designs or in new designs where thermal loading is high. In this position, heat pipes utilize gravity very effectively to enhance heat flow in the upward direction Heat pipes have extremely high effective thermal conductivity that is several magnitudes higher than the most heat conducting metals. In addition, heat pipes are highly unidirectional so that the effective conductivity for heat transfer in the reverse direction is greatly reduced. The concept is applied to the 9977 package that is currently going through the DOE certification review. The paper presents computer simulations using typical off-the-shelf heat pipe available configurations and performance data for the 9977 package. A path forward is outlined for implementing the concepts for further study and prototype testing.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Tue Mar 06 00:00:00 EST 2007},
month = {Tue Mar 06 00:00:00 EST 2007}
}

Conference:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share:
  • Drum type packages are routinely used to transport radioactive material (RAM) in the U.S. Department of Energy (DOE) complex. These packages are designed to meet the federal regulations described in 10 CFR 71.[1] In recent years, there has been a greater need to use these packagings to store the excess fissile material, especially plutonium for long term storage. While the design requirements for safe transportation of these packagings are well defined, the requirements for safe long term storage are not well established. Since the RAM contents in the packagings produce decay heat, it is important that they are stored carefullymore » to prevent overheating of the containment vessel (CV) seals to prevent any leakage and the impact limiter to maintain the package structural integrity. This paper analyzes different storage arrays for a typical 9977 packaging for thermal considerations and makes recommendations for their safe storage under normal operating conditions.« less
  • Stationary turbines are used to produce electricity in many areas of the world. Their performance is adversely affected by high ambient temperatures. Several means of reducing the turbine inlet temperature (offpeak water chiller and ice storage and absorption refrigeration systems) are being proposed as a means of increasing turbine output. In the present investigation the feasibility of increasing turbine output power by using its exhaust gases to power an ejector refrigeration system is demonstrated. The advantages of the ejector refrigeration are: it operates on a non-CFC fluid, its small number of moving parts and its small size. The analysis focusesmore » on United Technologies FT4 turbine with a base load output of 21.6 MW. It is demonstrated that the proposed system can decrease the turbine inlet temperature from 296.2 K to 277.6 K which increases the turbine output by 12.8% during periods of high ambient temperature and improves yearly averaged power output by 5.5% in a temperature climate. It is shown that the energy in the turbine exhaust has the potential of producing additional cooling beyond that required to reduce the inlet temperature.« less
  • Drum type packages are routinely used to transport radioactive material (RAM) in the U.S. Department of Energy (DOE) complex. These packages are designed to meet the federal regulations described in 10 CFR Part 71. The packages are transported in specially designed vehicles like Safe Secure Transport (SST) for safety and security. In the transport vehicles, the packages are placed close to each other to maximize the number of units in the vehicle. Since the RAM contents in the packagings produce decay heat, it is important that they are spaced sufficiently apart to prevent overheating of the containment vessel (CV) sealsmore » and the impact limiter to ensure the structural integrity of the package. This paper presents a simple methodology to assess thermal performance of a typical 9975 packaging in a transport configuration.« less
  • This paper describes an investigation of the axial heat transfer within a thermal transient anemometer probe. A previous study, evaluated the performance characteristics of a thermal transient anemometer system. The study revealed discrepancies between a simplified theory and test results in the development of a universal calibration curve for probes of varying diameters. Although the cause of these discrepancies were left uncertain due to an inadequate theoretical model, the study suggested that axial conduction within the probe could account for the deviations. In this paper, computer simulations are used to further investigate axial heat conduction within the probes. The effectmore » on calibration of axial variations of material properties along the probes is also discussed. Results from the computer simulation are used in lieu of the theoretical model used in the previous study to develop a satisfactory universal calibration curve. The computer simulations provide evidence that there is significant axial heat conduction within the probes, and that this was the cause of the discrepancies noted in the previous study.« less