Characterizing Electron Temperature Gradient Turbulence Via Numerical Simulation
Numerical simulations of electron temperature gradient (ETG) turbulence are presented which characterize the ETG fluctuation spectrum, establish limits to the validity of the adiabatic ion model often employed in studying ETG turbulence, and support the tentative conclusion that plasmaoperating regimes exist in which ETG turbulence produces sufficient electron heat transport to be experimentally relevant. We resolve prior controversies regarding simulation techniques and convergence by benchmarking simulations of ETG turbulence from four microturbulence codes, demonstrating agreement on the electron heat flux, correlation functions, fluctuation intensity, and rms flow shear at fixed simulation cross section and resolution in the plane perpendicular to the magnetic field. Excellent convergence of both continuum and particle-in-cell codes with time step and velocity-space resolution is demonstrated, while numerical issues relating to perpendicular (to the magnetic field) simulation dimensions and resolution are discussed. A parameter scan in the magnetic shear, s, demonstrates that the adiabatic ion model is valid at small values of s (s < 0.4 for the parameters used in this scan) but breaks down at higher magnetic shear. A proper treatment employing gyrokinetic ions reveals a steady increase in the electron heat transport with increasing magnetic shear, reaching electron heat transport rates consistent with analyses of experimental tokamak discharges.
- Research Organization:
- Lawrence Livermore National Laboratory (LLNL), Livermore, CA
- Sponsoring Organization:
- USDOE
- DOE Contract Number:
- W-7405-ENG-48
- OSTI ID:
- 900467
- Report Number(s):
- UCRL-CONF-221590
- Country of Publication:
- United States
- Language:
- English
Similar Records
Characterizing electron temperature gradient turbulence via numerical simulation
Resolving electron scale turbulence in spherical tokamaks with flow shear
Relating Gyrokinetic Electron Turbulence to Plasma Confinement in the National Spherical Torus Experiment
Journal Article
·
Thu Dec 14 23:00:00 EST 2006
· Physics of Plasmas
·
OSTI ID:20860430
Resolving electron scale turbulence in spherical tokamaks with flow shear
Journal Article
·
Mon Feb 14 23:00:00 EST 2011
· Physics of Plasmas
·
OSTI ID:21535167
Relating Gyrokinetic Electron Turbulence to Plasma Confinement in the National Spherical Torus Experiment
Thesis/Dissertation
·
Tue Nov 01 00:00:00 EDT 2011
·
OSTI ID:1365790