Mineralogy and Petrology of Comet Wild 2 Nucleus Samples
The bulk of the Wild 2 samples appear to be weakly-constructed mixtures of nanometerscale grains with occasional much larger (>1{micro}m) ferromagnesian silicates, Fe-Ni sulfides, Fe-Ni metal and accessory phases. The very wide range of olivine and low-Ca pyroxene compositions in Wild 2 require a wide range of formation conditions, probably reflecting different formation locations in the protoplanetary disk. The restricted compositional ranges of Fe-Ni sulfides, the wide range for silicates, and absence of hydrous phases indicate that Wild 2 experienced little or no aqueous alteration. Less abundant Wild 2 materials include a refractory particle, whose presence appears to require large-scale radial transport in the early protoplanetary disk. The nature of cometary solids is of fundamental importance to our understanding of the early solar nebula and protoplanetary history. Until now we have had to study comets from afar using spectroscopy, or settle for analyses of interplanetary dust particles (IDPs) of uncertain provenance. We report here mineralogical and petrographic analyses of particles derived directly from Comet Wild 2. All of the Wild 2 particles we have thus far examined have been modified in various ways by the capture process. All particles that may have been loose aggregates, ''traveling sand piles'', disaggregated into individual components with the larger, denser components penetrating more deeply into the aerogel. Individual grains experienced a wide range of heating effects that range from excellent preservation to melting (Fig. 1); such behavior was expected (1, 2 ,3). What is remarkable is the extreme variability of these modifications and the fact that severely modified and unmodified materials can be found within a micrometer of each other, requiring tremendous local temperature gradients. Fortunately, we have an internal gauge of impact collection heating. Fe-Ni sulfides are ubiquitous in the Wild 2 samples, are very sensitive indicators of heating, and accurate chemical analyses can reveal which have lost S, and which have not (and are therefore stoichiometric) (Fig. 2). Our surveys show that crystalline grains are found along the entire lengths of tracks, not just at track termini.
- Research Organization:
- Lawrence Livermore National Laboratory (LLNL), Livermore, CA
- Sponsoring Organization:
- USDOE
- DOE Contract Number:
- W-7405-ENG-48
- OSTI ID:
- 900163
- Report Number(s):
- UCRL-JRNL-225231; IM #339667
- Journal Information:
- Science, vol. 314, N/A, December 15, 2006, pp. 1735-1739, Journal Name: Science, vol. 314, N/A, December 15, 2006, pp. 1735-1739
- Country of Publication:
- United States
- Language:
- English
Similar Records
Supporting online materials for mineralogy and petrology of Comet81P/Wild 2 nucleus samples
Physical, Chemical, and Mineralogical Properties of Comet 81P/Wild 2 Particles Collected by Stardust