skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Search for b^0s oscillations in semileptonic b decays

Abstract

This note describes a search for B{sub s}{sup 0} oscillations using semileptonic B decays recorded by the CDF detector during Run II of the Fermilab Tevatron Collider on about 1 fb{sup -1} of data, as it was in April 2006. Opposite-side and same-side b flavor taggers are used in this analysis. First they measure the B{sup 0} oscillation frequency and calibrate opposite-side b flavor taggers on a sample of semileptonic B decays. A simultaneous analysis of B{sup 0} and B{sup +} decays to {ell}D{sup 0}, {ell}D{sup +} and {ell}D* final states has been performed. Beginning with tagger calibrations available from earlier analyses on the {ell} + SVT samples, they use the high statistic {ell}D sample to derive scale factors for predicted dilutions of the soft muon, soft electron and jet charge opposite-side taggers. Secondly they reconstruct B{sub s}{sup 0} {yields} {ell}{sup +}D{sub s}{sup -}X decays in three different D{sub s}{sup -} channels, namely {phi}{pi}{sup -}, K*{sup 0} K{sup -} and {pi}{sup +}{pi}{sup -}{pi}{sup -}. D mass, lepton-D mass and lifetime parameters for signal and backgrounds are determined with unbinned maximum likelihood fits. They validate their fitter and obtain sensitivity projections with toy Monte Carlo samples. The {Delta}m{sub s} sensitivity onmore » the semileptonic sample is 17.3 ps{sup -1}. With the combination of the semileptonic and hadronic analyses they observe a signature consistent with B{sub s}{sup 0} - {bar B}{sup s}{sup 0} oscillations. The probability that random tags background could fluctuate to mimic such a signature is 0.5%. Under the hypothesis that this is a signal for B{sub s}{sup 0} - {bar B}{sup s}{sup 0} oscillations, they measure {Delta}m{sub s} = 17.31{sub -0.18}{sup -0.33}(stat.) {+-} 0.07(syst.) ps{sup -1}.« less

Authors:
;
Publication Date:
Research Org.:
Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
899704
Report Number(s):
FERMILAB-PUB-06-514-E
TRN: US200711%%529
DOE Contract Number:  
AC02-07CH11359
Resource Type:
Journal Article
Country of Publication:
United States
Language:
English
Subject:
72 PHYSICS OF ELEMENTARY PARTICLES AND FIELDS; ELECTRONS; FERMILAB COLLIDER DETECTOR; FERMILAB TEVATRON; HYPOTHESIS; LIFETIME; OSCILLATIONS; PROBABILITY; SENSITIVITY; STATISTICS; Experiment-HEP

Citation Formats

Gomez-Ceballos, Guillelmo, and /Cantabria Inst. of Phys. Search for b^0s oscillations in semileptonic b decays. United States: N. p., 2007. Web.
Gomez-Ceballos, Guillelmo, & /Cantabria Inst. of Phys. Search for b^0s oscillations in semileptonic b decays. United States.
Gomez-Ceballos, Guillelmo, and /Cantabria Inst. of Phys. Thu . "Search for b^0s oscillations in semileptonic b decays". United States. doi:. https://www.osti.gov/servlets/purl/899704.
@article{osti_899704,
title = {Search for b^0s oscillations in semileptonic b decays},
author = {Gomez-Ceballos, Guillelmo and /Cantabria Inst. of Phys.},
abstractNote = {This note describes a search for B{sub s}{sup 0} oscillations using semileptonic B decays recorded by the CDF detector during Run II of the Fermilab Tevatron Collider on about 1 fb{sup -1} of data, as it was in April 2006. Opposite-side and same-side b flavor taggers are used in this analysis. First they measure the B{sup 0} oscillation frequency and calibrate opposite-side b flavor taggers on a sample of semileptonic B decays. A simultaneous analysis of B{sup 0} and B{sup +} decays to {ell}D{sup 0}, {ell}D{sup +} and {ell}D* final states has been performed. Beginning with tagger calibrations available from earlier analyses on the {ell} + SVT samples, they use the high statistic {ell}D sample to derive scale factors for predicted dilutions of the soft muon, soft electron and jet charge opposite-side taggers. Secondly they reconstruct B{sub s}{sup 0} {yields} {ell}{sup +}D{sub s}{sup -}X decays in three different D{sub s}{sup -} channels, namely {phi}{pi}{sup -}, K*{sup 0} K{sup -} and {pi}{sup +}{pi}{sup -}{pi}{sup -}. D mass, lepton-D mass and lifetime parameters for signal and backgrounds are determined with unbinned maximum likelihood fits. They validate their fitter and obtain sensitivity projections with toy Monte Carlo samples. The {Delta}m{sub s} sensitivity on the semileptonic sample is 17.3 ps{sup -1}. With the combination of the semileptonic and hadronic analyses they observe a signature consistent with B{sub s}{sup 0} - {bar B}{sup s}{sup 0} oscillations. The probability that random tags background could fluctuate to mimic such a signature is 0.5%. Under the hypothesis that this is a signal for B{sub s}{sup 0} - {bar B}{sup s}{sup 0} oscillations, they measure {Delta}m{sub s} = 17.31{sub -0.18}{sup -0.33}(stat.) {+-} 0.07(syst.) ps{sup -1}.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Thu Feb 01 00:00:00 EST 2007},
month = {Thu Feb 01 00:00:00 EST 2007}
}