First `Winged' and `X'-shaped Radio Source Candidates
A small number of double-lobed radio galaxies (17 from our own census of the literature) show an additional pair of low surface brightness ''wings'', thus forming an overall ''X''-shaped appearance. The origin of the wings in these radio sources is unclear. They may be the result of back-flowing plasma from the currently active radio lobes into an asymmetric medium surrounding the active nucleus, which would make these ideal systems in which to study thermal/non-thermal plasma interactions in extragalactic radio sources. Another possibility is that the wings are the aging radio lobes left over after a (rapid) realignment of the central supermassive black-hole/accretion disk system due perhaps to a merger. Generally, these models are not well tested; with the small number of known examples, previous works focused on detailed case studies of selected sources with little attempt at a systematic study of a large sample. Using the VLA-FIRST survey database, we are compiling a large sample of winged and X-shaped radio sources for such studies. As a first step toward this goal, an initial sample of 100 new candidate objects of this type are presented in this paper. The search process is described, optical identifications from available literature data, and basic radio data are presented. From the limited resolution FIRST images ({approx} 5''), we can already confidently classify a sufficient number of these objects as having the characteristic wing lengths >80% of the active lobes to more than double the number of known X-shaped radio sources. We have also included as candidates, radio sources with shorter wings (<80% wing to lobe length ratios), or simply ''winged'' sources, as it is probable that projection effects are important. Finally, among the candidates are four quasars (z=0.37 to 0.84), and several have morphologies suggestive of Fanaroff-Riley type-I (low-power) radio galaxies. While followup observations are necessary to confirm these identifications, this stresses the importance of source orientation and imaging limitations in finding these enigmatic objects.
- Research Organization:
- Stanford Linear Accelerator Center (SLAC)
- Sponsoring Organization:
- USDOE
- DOE Contract Number:
- AC02-76SF00515
- OSTI ID:
- 898149
- Report Number(s):
- SLAC-PUB-12310; astro-ph/0701278
- Journal Information:
- Astronomical Journal, Journal Name: Astronomical Journal
- Country of Publication:
- United States
- Language:
- English
Similar Records
FIRST 'WINGED' AND X-SHAPED RADIO SOURCE CANDIDATES. II. NEW REDSHIFTS
IGR J18249−3243: a new GeV-emitting FR II and the emerging population of high-energy radio galaxies