skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Testing a passive revegetation approach for restoring coastal plain depression wetlands

Abstract

No abstract prepared.

Authors:
Publication Date:
Research Org.:
Savannah River Ecology Laboratory (SREL), Aiken, SC
Sponsoring Org.:
USDOE
OSTI Identifier:
897351
Report Number(s):
SREL 2977
Journal ID: ISSN 1061-2971; REECFA; TRN: US200704%%578
DOE Contract Number:
DE-FC09-96SR28546
Resource Type:
Journal Article
Resource Relation:
Journal Name: Restoration Ecology; Journal Volume: 14
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES; REVEGETATION; TESTING; WETLANDS; COASTAL REGIONS

Citation Formats

De Steven, D., R.R. Sharitz, J.H. Singer, and C.D. Barton. Testing a passive revegetation approach for restoring coastal plain depression wetlands. United States: N. p., 2006. Web. doi:10.1111/j.1526-100X.2006.00153.x.
De Steven, D., R.R. Sharitz, J.H. Singer, and C.D. Barton. Testing a passive revegetation approach for restoring coastal plain depression wetlands. United States. doi:10.1111/j.1526-100X.2006.00153.x.
De Steven, D., R.R. Sharitz, J.H. Singer, and C.D. Barton. Sun . "Testing a passive revegetation approach for restoring coastal plain depression wetlands". United States. doi:10.1111/j.1526-100X.2006.00153.x.
@article{osti_897351,
title = {Testing a passive revegetation approach for restoring coastal plain depression wetlands},
author = {De Steven, D., R.R. Sharitz, J.H. Singer, and C.D. Barton},
abstractNote = {No abstract prepared.},
doi = {10.1111/j.1526-100X.2006.00153.x},
journal = {Restoration Ecology},
number = ,
volume = 14,
place = {United States},
year = {Sun Jan 01 00:00:00 EST 2006},
month = {Sun Jan 01 00:00:00 EST 2006}
}
  • Barton, Christopher, D., Diane DeSteven and John C. Kilgo. 2004. Mitigation bank promotes research on restoring Coastal Plain depression wetlands (South Carolina). Ecol. Rest. 22(4):291-292. Abstract: Carolina bays and smaller depression wetlands support diverse plant communities and provide critical habitat for semi-aquatic fauna throughout the Coastal Plain region of the southeastern United States. Historically, many depression wetlands were altered or destroyed by surface ditching, drainage, and agricultural or silviculture uses. These important habitats are now at further risk of alteration and loss following a U.S. Supreme Court decision in 2001 restricting federal regulation of isolated wetlands. Thus, there is increasedmore » attention towards protecting intact sites and developing methods to restore others. The U.S. Department of Energy's (DOE) 312-mi2 (800-km2) Savannah River Site (SRS) in west-central South Carolina includes about 350 Carolina bays and bay-like wetland depressions, of which about two-thirds were degraded or destroyed prior to federal acquisition of the land. Although some of the altered wetlands have recovered naturally, others still have active active drainage ditches and contain successional forests typical of drained sites. In 1997, DOE established a wetland mitigation bank to compensate for unavoidable wetland impacts on the SRS. This effort provided an opportunity fir a systematic research program to investigate wetland restoration techniques and ecological responses. Consequently, research and management staffs from the USDA Forest Service, Westinghouse Savannah River Corporation, the Savannah River Technology Center, the Savannah River Ecology Laboratory (SREL) and several universities developed a collaborative project to restore degraded depression wetlands on the SRS. The mitigation project seeks cost-effective methods to restore the hydrology and vegetation typical of natural depression wetlands, and so enhance habitats for wetland-dependent wildlife. We present a brief summary of this project and the research studies now underway.« less
  • Most of the coastal wetlands of the South Atlantic region of the United States are expected to diminish in size in response to increasing human population growth and accelerating rates of rising sea level. after examination of the distribution of wetlands, elevation contours, estimates of surface slope, soil types, and peat deposits on the peninsula, current models were considered unsuited for wetlands of the Albemarle-Pamlico peninsula of North Carolina. Some unusual features of this peninsula are low elevation (56% of total area <1.5 m), extensive coverage by wetlands (53%) and hydric soils (90%), negligible slopes of the land surface, virtualmore » absence of tides, and lack of abundant sources of sediment. In the process of reconstructing how past rises in sea level most likely led to present conditions, it became apparent that vertical accretion of peat in situ is largely responsible for landscape features in areas where elevations are lowest. Were it not for these deposits, the land surface area of the peninsula would be decreasing relative to sea level. This situation contrasts sharply with areas in the eastern United States fringed by tidal marshes, which are undergoing overland migration at a rate dictated by landward slope and the rate of rising sea level. If the rate of sea level rise accelerates, it is doubtful if vertical accretion rates of peat can prevent submergence of extensive areas of wetlands in the Albemarle-Pamlico peninsula. Land use and drainage in the lowest elevations of the peninsula are currently being affected by sea level. Future land management of the peninsula will be constrained by potential landscape changes as a result of rising sea level. 28 refs., 6 figs., 5 tabs.« less
  • Assessment and comparison of richness, abundance and difference of herpetofauna at five small isolated wetlands located within a commercial forest landscape in the South Carolina Coastal Plain. Data indicates small isolated wetlands are focal points of herpetofaunal richness and abundance in managed coastal plain forest and contribute more to regional biodiversity than is implied by their small size or ephemeral hydrology.
  • Abstract: Drained depressional wetlands are typically restored by plugging ditches or breaking drainage tiles to allow recovery of natural ponding regimes, while relying on passive recolonization from seed banks and dispersal to establish emergent vegetation. However, in restored depressions of the southeastern United States Coastal Plain, certain characteristic rhizomatous graminoid species may not recolonize because they are dispersal-limited and uncommon or absent in the seed banks of disturbed sites. We tested whether selectively planting such wetland dominants could facilitate restoration by accelerating vegetative cover development and suppressing non-wetland species. In an operational-scale project in a South Carolina forested landscape, drainedmore » depressional wetlands were restored in early 2001 by completely removing woody vegetation and plugging surface ditches. After forest removal, tillers of two rhizomatous wetland grasses (Panicum hemitomon, Leersia hexandra) were transplanted into singlespecies blocks in 12 restored depressions that otherwise were revegetating passively. Presence and cover of all plant species appearing in planted plots and unplanted control plots were recorded annually. We analyzed vegetation composition after two and four years, during a severe drought (2002) and after hydrologic recovery (2004). Most grass plantings established successfully, attaining 15%–85% cover in two years. Planted plots had fewer total species and fewer wetland species compared to control plots, but differences were small. Planted plots achieved greater total vegetative cover during the drought and greater combined cover of wetland species in both years. By 2004, planted grasses appeared to reduce cover of non-wetland species in some cases, but wetter hydrologic conditions contributed more strongly to suppression of non-wetland species. Because these two grasses typically form a dominant cover matrix in herbaceous depressions, our results indicated that planting selected species could supplement passive restoration by promoting a vegetative structure closer to that of natural wetlands.« less
  • The leading environmental problem facing coastal Louisiana regions is the loss of wetlands. Oil and gas exploration and production activities have contributed to wetland damage through erosion at numerous sites where canals have been cut through the marsh to access drilling sites. An independent oil and gas producer, working with Southeastern Louisiana University and two oil field service companies, developed a process to stabilize drill cuttings so that they could be used as a substrate to grow wetlands vegetation. The U.S. Department of Energy (DOE) funded a project under which the process would be validated through laboratory studies and fieldmore » demonstrations. The laboratory studies demonstrated that treated drill cuttings support the growth of wetlands vegetation. However, neither the Army Corps of Engineers (COE) nor the U.S. Environmental Protection Agency (EPA) would grant regulatory approval for afield trial of the process. Argonne National Laboratory was asked to join the project team to try to find alternative mechanisms for gaining regulatory approval. Argonne worked with EPA's Office of Reinvention and learned that EPA's Project XL would be the only regulatory program under which the proposed field trial could be done. One of the main criteria for an acceptable Project XL proposal is to have a formal project sponsor assume the responsibility and liability for the project. Because the proposed project involved access to private land areas, the team felt that an oil and gas company with coastal Louisiana land holdings would need to serve as sponsor. Despite extensive communication with oil and gas companies and industry associations, the project team was unable to find any organization willing to serve as sponsor. In September 1999, the Project XL proposal was withdrawn and the project was canceled.« less