Further development of the ion cross section for single event upset: model (HICUP)
The HICUP models are shown to be useful tools for both analyzing cross section data and performing upset rate calculations, thereby allowing the cross section concept to be used in both areas. The angular dependent HICUP model is developed from the RPP geometry and the Weibull density function. It is compared with angular cross section data, showing good agreement. The HICUP model is used to derive the correct scaling laws for transforming cross section data taken off-normal to normal incidence. The HICUP scaling reconciles two previously proposed inverse cosine scaling corrections which are shown to be asymptotic forms of the HICUP scaling. The angle-integrated form, I-HICUP, is developed and used in Galactic Cosmic Ray (GCR) upset rate calculations on several devices. Results are nearly identical to SPACE RADIATION{trademark} calculations. I-HICUP is used to perform an uncertainty analysis of GCR upset rate, examining the sensitivity to uncertainties in the input parameters. The GCR upset rate shows the greatest sensitivity to upset threshold, device depth (and funnel depth if applicable), and saturation cross section, the least sensitivity to RPP length-to-width aspect ratio. The other Weibull parameters, width, W, and shape, b, are of intermediate sensitivity.
- Research Organization:
- Sandia National Labs., Albuquerque, NM (United States)
- Sponsoring Organization:
- USDOE, Washington, DC (United States)
- DOE Contract Number:
- AC04-94AL85000
- OSTI ID:
- 89552
- Report Number(s):
- SAND--95-1338C; CONF-9507137--1; ON: DE95014866
- Country of Publication:
- United States
- Language:
- English
Similar Records
Modeling the heavy ion upset cross section
Single event upsets for Space Shuttle flights of new general purpose computer memory devices