The Structure and Density of Mo and Acid Sites in Mo-ExchangedH-ZSMZ Catalysts
Mo/H-ZSM5 (1.0-6.3 wt percent Mo; Mo/Al = 0.11-0.68) catalysts for CH4 aromatization were prepared from physical mixtures of MoO3 and H-ZSM5 (Si/Al= 14.3). X-ray diffraction and elemental analysis of physical mixtures treated in air indicate that MoOx species migrate onto the external ZSM5 surface at about 623 K. Between 773 and 973 K, MoOx species migrate inside zeolite channels via surface and gas phase transport, exchange at acid sites, and react to form H2O. The amount of H2O evolved during exchange and the amount of residual OH groups detected by isotopic equilibration with D2 showed that each Mo atom replaces one H+ during exchange. This stoichiometry and the requirement for charge compensation suggest that exchanged species consist of (Mo2O5)2+ditetrahedral structures interacting with two cation exchange sites. The proposed mechanism may provide a general framework to describe the exchange of multivalent cations onto Al sites in zeolites. As the Mo concentration exceeds that required to form a MoOx monolayer on the external zeolite surface ({approx}4 wt percent Mo for the H-ZSM5 used), Mo species sublime as (MoO3)n oligomers or extract Al from the zeolite framework to form inactive Al2(MoO4)3 domains detectable by 27Al NMR. These (Mo2O5)2+ species reduce to form the active MoCx species during the initial stages of CH4 conversion reactions. Optimum CH4 aromatization rates were obtained on catalysts with intermediate Mo contents ({approx}0.4Mo/Al), because both MoCx and acid sites are required to activate CH4 and to convert the initial C2H4 products into C6+ aromatics favored by thermodynamics.
- Research Organization:
- Ernest Orlando Lawrence Berkeley NationalLaboratory, Berkeley, CA (US)
- Sponsoring Organization:
- USDOE Director, Office of Science
- DOE Contract Number:
- AC02-05CH11231
- OSTI ID:
- 893724
- Report Number(s):
- LBNL--43581
- Journal Information:
- Journal of Physical Chemistry, Journal Name: Journal of Physical Chemistry Journal Issue: 28 Vol. 103; ISSN JPCHAX; ISSN 0022-3654
- Country of Publication:
- United States
- Language:
- English
Similar Records
Structure and density of Mo and acid sites in Mo-exchanged H-ZSM5 catalysts for nonoxidative methane conversion
Synthesis, structural characterization, and catalytic properties of tungsten-exchanged H-ZSM5