Flow dependence of the PRD in EBR-II
- Argonne National Lab., IL (United States)
The linear (and Doppler) feedback components of the power reactivity decrement (PRD) for various loading configurations of the Experimental Breeder Reactor II (EBR-II) have been reported. (The PRD at a power is here the negative of the reactivity required to bring the reactor from zero-power, hot-critical, to that power.) The delineation of the feedback components into power dependent and power-to-flow dependent parts have also been reported. The nonlinear feedback component, primarily due to bowings of the subassembly ducts, is deduced by subtraction of the calculated total linear (and small Doppler) component from the measured values of PRD as a function of reactor power. Furthermore, this component is generally assumed to be a function of the power-to-flow ratio of the reactor for purposes of estimating PRD values at differing flows. If the nonlinear reactivity component is indeed solely power-to-flow dependent, then the values of measured total PRDs for differing flows should lie for the respective power values, corresponding to equivalent power-to-flow values, on a straight line having a negative slope. (This slope would be the power rate of the solely power part of the linear component of the PRD). Evidence that this may not be a reasonable assumption is reported.
- OSTI ID:
- 89296
- Report Number(s):
- CONF-941102--
- Journal Information:
- Transactions of the American Nuclear Society, Journal Name: Transactions of the American Nuclear Society Vol. 71; ISSN 0003-018X; ISSN TANSAO
- Country of Publication:
- United States
- Language:
- English
Similar Records
Comparisons of PRD (power-reactivity-decrements) components for various EBR-II configurations
PRD (power-reactivity-decrement) components of a homogeneous U10Zr-fueled 900 MWt LMR