A Mountain-Scale Thermal Hydrologic Model for Simulating FluidFlow and Heat Transfer in Unsaturated Fractured Rock
A multidimensional, mountain-scale, thermal-hydrologic (TH) numerical model is presented for investigating unsaturated flow behavior in response to decay heat from the radioactive waste repository in the Yucca Mountain unsaturated zone (UZ), Nevada. The model, consisting of both two-dimensional (2-D) and three-dimensional (3-D) representations of the UZ repository system, is based on the current repository design, drift layout, thermal loading scenario, and estimated current and future climate conditions. This mountain-scale TH model evaluates the coupled TH processes related to mountain-scale UZ flow. It also simulates the impact of radioactive waste heat release on the natural hydrogeological system, including heat-driven processes occurring near and far away from the emplacement tunnels or drifts. The model simulations predict thermally perturbed liquid saturation, gas- and liquid-phase fluxes, and water and rock temperature elevations, as well as the changes in water flux driven by evaporation/condensation processes and drainage between drifts. These simulations provide mountain-scale thermally perturbed flow fields for assessing the repository performance under thermal loading conditions.
- Research Organization:
- Ernest Orlando Lawrence Berkeley NationalLaboratory, Berkeley, CA (US)
- Sponsoring Organization:
- USDOE Office of Civilian Radioactive WasteManagement
- DOE Contract Number:
- AC02-05CH11231
- OSTI ID:
- 891620
- Report Number(s):
- LBNL--57921; BnR: YN1901000
- Journal Information:
- Journal of Contaminant Hydrology, Journal Name: Journal of Contaminant Hydrology Journal Issue: 1-2 Vol. 86; ISSN JCOHE6; ISSN 0169-7722
- Country of Publication:
- United States
- Language:
- English
Similar Records
Modeling thermal-hydrological response of the unsaturated zone at Yucca Mountain, Nevada, to thermal load at a potential repository
Mountain-Scale Coupled Processes (TH/THC/THM)
Related Subjects
CLIMATES
DESIGN
DRAINAGE
FLUID FLOW
HEAT TRANSFER
NEVADA
PERFORMANCE
POSITIONING
RADIOACTIVE WASTES
SATURATION
WATER
YUCCA MOUNTAIN
thermal-hydrologic processes in subsurface thermal load YuccaMountain fluid and heat flow in porous media heat pipe reservoirsimulation fractured unsaturated rock