skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Nonlinear decline-rate dependence and intrinsic variation of typeIa supernova luminosities

Journal Article · · The Astrophysical Journal
OSTI ID:891354

Published B and V fluxes from nearby Type Ia supernova are fitted to light-curve templates with 4-6 adjustable parameters. Separately, B magnitudes from the same sample are fitted to a linear dependence on B-V color within a post-maximum time window prescribed by the CMAGIC method. These fits yield two independent SN magnitude estimates B{sub max} and B{sub BV}. Their difference varies systematically with decline rate {Delta}m{sub 15} in a form that is compatible with a bilinear but not a linear dependence; a nonlinear form likely describes the decline-rate dependence of B{sub max} itself. A Hubble fit to the average of B{sub max} and B{sub BV} requires a systematic correction for observed B-V color that can be described by a linear coefficient R = 2.59 {+-} 0.24, well below the coefficient R{sub B} {approx} 4.1 commonly used to characterize the effects of Milky Way dust. At 99.9% confidence the data reject a simple model in which no color correction is required for SNe that are clustered at the blue end of their observed color distribution. After systematic corrections are performed, B{sub max} and B{sub BV} exhibit mutual rms intrinsic variation equal to 0.074 {+-} 0.019 mag, of which at least an equal share likely belongs to B{sub BV}. SN magnitudes measured using maximum-luminosity or cmagic methods show comparable rms deviations of order {approx}0.14 mag from the Hubble line. The same fit also establishes a 95% confidence upper limit of 486 km s{sup -1} on the rms peculiar velocity of nearby SNe relative to the Hubble flow.

Research Organization:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Organization:
USDOE Director. Office of Science. Office of High EnergyPhysics
DOE Contract Number:
DE-AC02-05CH11231
OSTI ID:
891354
Report Number(s):
LBNL-59261; R&D Project: PSUOPS; BnR: KA1301020; TRN: US0605371
Journal Information:
The Astrophysical Journal, Vol. 641, Issue 1pt1; Related Information: Journal Publication Date: 04/10/2006
Country of Publication:
United States
Language:
English