skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Laboratory measurements on reservoir rocks from The Geysers geothermal field

Abstract

A suite of laboratory measurements have been conducted on Geysers metagraywacke and metashale recovered from a drilled depth of 2599 to 2602 meters in NEGU-17. The tests have been designed to constrain the mechanical and water-storage properties of the matrix material. Various measurements have been made at a variety of pressures and at varying degrees of saturation. Both compressional and shear velocities exhibit relatively little change with effective confining pressure. In all of the samples, water saturation causes an increase in the compressional velocity. In some samples, saturation results in a moderate decrease in shear velocity greater in magnitude than would be expected based on the slight increase in bulk density. It is found that the effect of saturation on the velocities can be quantitatively modeled through a modification of Biot-Gassmann theory to include weakening of the shear modulus with saturation. The decrease is attributed to chemo-mechanical weakening caused by the presence of water. The degree of frame weakening of the shear modulus is variable between samples, and appears correlated with petrographic features of the cores. Two related models are presented through which we can study the importance of saturation effects on field-scale velocity variations. The model results indicate thatmore » the saturation effects within the matrix are significant and may contribute to previously observed field anomalies. The results help to define ways in which we may be able to separate the effects of variations in rock properties, caused by phenomena such as degree of fracturing, from similar effects caused by variations in matrix saturation. The need for both compressional and shear velocity data in order to interpret field anomalies is illustrated through comparisons of model results with the field observations.« less

Authors:
Publication Date:
Research Org.:
New England Research, Inc., White River Junction, VT
Sponsoring Org.:
USDOE
OSTI Identifier:
889360
Report Number(s):
SGP-150-15
TRN: US200619%%801
Resource Type:
Conference
Resource Relation:
Conference: Proceedings, Twentieth Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, CA, January 24-26, 1995
Country of Publication:
United States
Language:
English
Subject:
15 GEOTHERMAL ENERGY; 02 PETROLEUM; BULK DENSITY; FRACTURING; GEOTHERMAL FIELDS; GEYSERS; MATRIX MATERIALS; METERS; MODIFICATIONS; RESERVOIR ENGINEERING; RESERVOIR ROCK; SATURATION; SHEAR; VELOCITY; WATER; WATER SATURATION; Geothermal Legacy

Citation Formats

Boitnott, G.N. Laboratory measurements on reservoir rocks from The Geysers geothermal field. United States: N. p., 1995. Web.
Boitnott, G.N. Laboratory measurements on reservoir rocks from The Geysers geothermal field. United States.
Boitnott, G.N. Thu . "Laboratory measurements on reservoir rocks from The Geysers geothermal field". United States. doi:. https://www.osti.gov/servlets/purl/889360.
@article{osti_889360,
title = {Laboratory measurements on reservoir rocks from The Geysers geothermal field},
author = {Boitnott, G.N.},
abstractNote = {A suite of laboratory measurements have been conducted on Geysers metagraywacke and metashale recovered from a drilled depth of 2599 to 2602 meters in NEGU-17. The tests have been designed to constrain the mechanical and water-storage properties of the matrix material. Various measurements have been made at a variety of pressures and at varying degrees of saturation. Both compressional and shear velocities exhibit relatively little change with effective confining pressure. In all of the samples, water saturation causes an increase in the compressional velocity. In some samples, saturation results in a moderate decrease in shear velocity greater in magnitude than would be expected based on the slight increase in bulk density. It is found that the effect of saturation on the velocities can be quantitatively modeled through a modification of Biot-Gassmann theory to include weakening of the shear modulus with saturation. The decrease is attributed to chemo-mechanical weakening caused by the presence of water. The degree of frame weakening of the shear modulus is variable between samples, and appears correlated with petrographic features of the cores. Two related models are presented through which we can study the importance of saturation effects on field-scale velocity variations. The model results indicate that the saturation effects within the matrix are significant and may contribute to previously observed field anomalies. The results help to define ways in which we may be able to separate the effects of variations in rock properties, caused by phenomena such as degree of fracturing, from similar effects caused by variations in matrix saturation. The need for both compressional and shear velocity data in order to interpret field anomalies is illustrated through comparisons of model results with the field observations.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Thu Jan 26 00:00:00 EST 1995},
month = {Thu Jan 26 00:00:00 EST 1995}
}

Conference:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share:
  • Previous measurements of acoustic velocities on NEGU- 17 cores indicate that saturation effects are significant enough to cause V p/V s anomalies observed in the field. In this study we report on the results of new measurements on core recently recovered from SB-15-D along with some additional measurements on the NEGU-17 cores. The measurements indicate correlations between mechanical, transport, and water storage properties of the matrix which may prove useful for reservoir assessment and management. The SB-15-D material is found to be similar to the NEGU-17 material in terms of acoustic velocities, being characterized by a notably weak pressure dependencemore » on the velocities and a modest V p/V s signature of saturation. The effect of saturation on V p/V s appears to result in part from a chemo-mechanical weakening of the shear modulus due to the presence of water. Electrical properties of SB-15-D material are qualitatively similar to those of the NEGU-17 cores, although resistivities of SB-15-D cores are notably lower and dielectric permittivities higher than in their NEGU- 17 counterparts. While some limited correlations of measured properties with depth are noted, no clear change in character is observed within SB-15-D cores which can be associated with the proposed cap-rock/reservoir boundary.« less
  • Rock samples taken from two outcrops, as well as rare cores from three well bores at the Geysers geothermal field, California, were tested at temperatures and pressures similar to those found in the geothermal field. Both intact and 30/sup 0/ sawcut cylinders were deformed at confining pressures of 200-1000 bars, pore pressure of 30 bars and temperatures of 150/sup 0/ and 240/sup 0/C.Thin-section and X-ray analysis revealed that some borehole samples had undergone extensive alteration and recrystallization. Constant strain rate tests of 10/sup -4/ and 10/sup -6/ per sec gave a coefficient of friction of 0.68. Due to the highlymore » fractured nature of the rocks taken from the production zone, intact samples were rarely 50% stronger than the frictional strength.This result suggests that the Geysers reservoir can support shear stresses only as large as its frictional shear strength. Velocity of p-waves (6.2 km/sec) was measured on one sample. Acoustic emission and sliding on a sawcut were related to changes in pore pressure. b-values computed from the acoustic emissions generated during fluid injection were typically about 0.55. An unusually high b-value (approximately 1.3) observed during sudden injection of water into the sample may have been related to thermal cracking.« less
  • This paper reports on a continuing experimental effort to characterize the adsorption behavior of rocks from The Geysers steam field in California. We show adsorption results obtained for 36 rock samples. All of the adsorption isotherms plotted on the same graph exhibit an envelope of isotherms. The minimum and the maximum values of the slope (or rate of adsorption) and of the magnitude within this envelope of isotherms belonged to the UOC-1 (felsite) and NCPA B-5 (serpentine) samples. The values of surface area and porosity, and pore size distribution for 19 of the samples indicated a very weak correlation withmore » adsorption. An interpretation of the pore size distributions and the liquid saturation isotherms suggests that the change in the slope and the magnitude of the adsorption isotherms within the envelope is controlled primarily by the physical adsorption mechanism instead of capillary condensation. Grain-size and framework grain to matrix ratio are found to be insufficient to characterize this adsorption behavior. An accurate identification of the mineralogy of the samples will be essential to complete this analysis.« less
  • This paper reports on a continuing experimental effort to characterize the adsorption behavior of rocks from The Geysers steam field in California. We show adsorption results obtained for 36 rock samples. All of the adsorption isotherms plotted on the same graph exhibit an envelope of isotherms. The minimum and the maximum values of the slope (or rate of adsorption) and of the magnitude within this envelope of isotherms belonged to the UOC-1 (felsite) and NCPA B-5 (serpentine) samples. The values of surface area and porosity, and pore size distribution for 19 of the samples indicated a very weak correlation withmore » adsorption. An interpretation of the pore size distributions and the liquid saturation isotherms suggests that the change in the slope and the magnitude of the adsorption isotherms within the envelope is controlled primarily by the physical adsorption mechanism instead of capillary condensation. Grain-size and framework grain to matrix ratio are found to be insufficient to characterize this adsorption behavior. An accurate identification of the mineralogy of the samples will be essential to complete this analysis.« less
  • Previous measurements of acoustic velocities on NEGU-17 cores indicate that saturation effects are significant enough to cause V{sub p}/V{sub s}, anomalies observed in the field. In this study we report on the results of new measurements on core recently recovered from SB-15-D along with some additional measurements on the NEGU-17 cores. The measurements indicate correlations between mechanical, transport, and water storage properties of the matrix which may prove useful for reservoir assessment and management. The SB-15-D material is found to be similar to the NEGU-17 material in terms of acoustic velocities, being characterized by a notably weak pressure dependence onmore » the velocities and a modest V{sub p}/V{sub s} signature of saturation. The effect of saturation on V{sub p}/V{sub s} appears to result in part from a chemo-mechanical weakening of the shear modulus due to the presence of water. Electrical properties of SB-15-D material are qualitatively similar to those of the NEGU-17 cores, although resistivities of SB-15-D cores are notably lower and dielectric permittivities higher than in their NEGU-17 counterparts. While some limited correlations of measured properties with depth are noted, no clear change in character is observed within SB-15-D cores which can be associated with the proposed caprock/reservoir boundary.« less