Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Development of a dual-porosity model for vapor-dominated fractured geothermal reservoirs using a semi-analytical fracture/matrix interaction term

Conference ·
OSTI ID:888956
A new type of dual-porosity model is being developed to simulate two-phase flow processes in fractured geothermal reservoirs. At this time it is assumed that the liquid phase in the matrix blocks remains immobile. By utilizing the effective compressibility of a two-phase water/steam mixture in a porous rock, flow within the matrix blocks can be modeled by a single diffusion equation. This equation in turn is replaced by a nonlinear ordinary differential equation that utilizes the mean pressure and mean saturation in the matrix blocks to calculate the rate of fluid flow between the matrix blocks and fractures. This equation has been incorporated into the numerical simulator TOUGH to serve as a source/sink term for computational gridblocks that represent the fracture system. The new method has been compared with solutions obtained using fully-discretized matrix blocks, on a problem involving a three-dimensional vapor-dominated reservoir containing an injection and a production well, and has been found to be quite accurate.
Research Organization:
Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA; University of California, Berkeley, CA
Sponsoring Organization:
USDOE
DOE Contract Number:
AC03-76SF00098
OSTI ID:
888956
Report Number(s):
SGP-TR-145-39
Country of Publication:
United States
Language:
English

Similar Records

Development of a dual-porosity model for vapor-dominated fractured geothermal reservoirs using a semi-analytical fracture/matrix interaction term
Technical Report · Sun Jan 31 23:00:00 EST 1993 · OSTI ID:10188407

A dual-porosity reservoir model with an improved coupling term
Conference · Tue Dec 31 23:00:00 EST 1991 · OSTI ID:888720

A dual-porosity reservoir model with an improved coupling term
Conference · Tue Dec 31 23:00:00 EST 1991 · OSTI ID:5078849

Related Subjects