skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: High resolution hypernuclear spectroscopy

Abstract

Hypernuclear spectroscopy provides fundamental information for understanding the effective ?-Nucleon interaction. Jefferson Laboratory experiment E94-107 was designed to perform high resolution hypernuclear spectroscopy by electroproduction of strangeness in four 1p-shell nuclei: 12C, 9Be, 16O, and 7Li. The first part of the experiment on 12C and 9Be has been performed in January and April-May 2004 in Hall A at Jefferson Lab. Significant modifications were made to the standard Hall A apparatus for this challenging experiment: two septum magnets and a RICH detector have been added to get reasonable counting rates and excellent particle identification, as required for the experiment. A description of the apparatus and the preliminary analysis results are presented here.

Authors:
Publication Date:
Research Org.:
Thomas Jefferson National Accelerator Facility, Newport News, VA
Sponsoring Org.:
USDOE - Office of Energy Research (ER)
OSTI Identifier:
883856
Report Number(s):
JLAB-PHY-04-73; DOE/ER/40150-3943
TRN: US0603585
DOE Contract Number:
AC05-84ER40150
Resource Type:
Conference
Resource Relation:
Conference: 8th Workshop on Electron Nucleus Scattering, Elba, Italy, 21-25 Jun 2004
Country of Publication:
United States
Language:
English
Subject:
43 PARTICLE ACCELERATORS; CEBAF ACCELERATOR; COUNTING RATES; ELECTRONS; ELECTROPRODUCTION; MODIFICATIONS; NUCLEI; PARTICLE IDENTIFICATION; RESOLUTION; SCATTERING; SEPTUM MAGNETS; SPECTROSCOPY; STRANGENESS

Citation Formats

F. Garibaldi. High resolution hypernuclear spectroscopy. United States: N. p., 2005. Web.
F. Garibaldi. High resolution hypernuclear spectroscopy. United States.
F. Garibaldi. 2005. "High resolution hypernuclear spectroscopy". United States. doi:. https://www.osti.gov/servlets/purl/883856.
@article{osti_883856,
title = {High resolution hypernuclear spectroscopy},
author = {F. Garibaldi},
abstractNote = {Hypernuclear spectroscopy provides fundamental information for understanding the effective ?-Nucleon interaction. Jefferson Laboratory experiment E94-107 was designed to perform high resolution hypernuclear spectroscopy by electroproduction of strangeness in four 1p-shell nuclei: 12C, 9Be, 16O, and 7Li. The first part of the experiment on 12C and 9Be has been performed in January and April-May 2004 in Hall A at Jefferson Lab. Significant modifications were made to the standard Hall A apparatus for this challenging experiment: two septum magnets and a RICH detector have been added to get reasonable counting rates and excellent particle identification, as required for the experiment. A description of the apparatus and the preliminary analysis results are presented here.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = 2005,
month = 2
}

Conference:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share:
  • The first ''systematic'' study of 1 p shell hypernuclei with electromagnetic probes has started in Hall A at Jefferson Lab [?]. The aim is to perform hypernuclear high resolution spectroscopy by the electroproduction of strangeness on four 1p-shell targets: 12C, 9Be, 16O, 7Li. The first part of the experiment on 12C and 9Be has been performed in 2004, the second part (16O and 7Li) is scheduled for June 2005. To overcome the major experimental difficulties, namely the low counting rate and the challenging Particle IDentification (PID), two septum magnets and a Ring Imaging CHerenkov (RICH) detector had to be addedmore » to the existing apparatus. After underlining the particular role the electroproduction reaction plays in hypernuclear physics we describe the challenging modifications of the Hall A apparatus. Preliminary results on 12C and 9Be are presented.« less
  • Updated results of the experiment E94-107 hypernuclear spectroscopy in Hall A of the Thomas Jefferson National Accelerator Facility (Jefferson Lab), are presented. The experiment provides high resolution spectra of excitation energy for 12B_\Lambda, 16N_\Lambda, and 9Li_\Lambda hypernuclei obtained by electroproduction of strangeness. A new theoretical calculation for 12B_\Lambda, final results for 16N_\Lambda, and discussion of the preliminary results of 9Li_\Lambda are reported.
  • Hypernuclear spectroscopy via electromagnetic induced reactions is a valuable and powerful way to study hypernuclei, hadronic systems with non-zero strangeness content, providing an alternative to the hadron induced reactions mainly studied so far. Electron-induced hypernuclear spectroscopy has been studied in Hall A at Jefferson Lab on three nuclei, 12C, 16O, and 9Be with unprecedented resolution and with an improved particle identification system, using a RICH detector, in order to unambiguously identify kaons, thus allowing the measurement of high-quality, almost background-free, hypernuclear spectra. Two superconducting septum magnets were added to the existing apparatus in order to permit particle detection at verymore » forward angle providing a reasonable counting rate. These studies have provided the first quantitative information on, for instance, core-excited states in hypernuclei. In the case of oxygen, a waterfall target has been employed allowing for the simultaneous measurement of hypernuclear production on oxygen and of elementary kaon-Lambda electro-production on protons: a crucial measurement to disentangle the contribution of the elementary reaction from the measured hypernuclear production cross section, yielding direct access to the nucleus-hypernucleus transition structure. Final results for 12C and 16O as well as preliminary results on 9Be will be presented.« less
  • As a natural extension of the first successful hypernuclear spectroscopy through the (e,e'K+) reaction (JLAB-E89-009), a new experiment with a newly developed High Resolution Kaon Spectrometer (HKS) and new configuration of the electron spectrometer was proposed. The high performance of the HKS and the new electron spectrometer configuration (tilt method) enables us to improve the energy resolution by a factor of 2, the hypernuclear yield by a factor of 50 and the signal to noise ratio by a factor of 10.
  • An experimental technique for single-Lambda spectroscopy of the light and medium-heavy mass Lambda-hypernuclei developed at the Jlab by the E01-011 Collaboration has been described. The technique is based on the electroproduction of Lambda-hypernuclei by the (e,eK+) reaction and newly constructed 2nd generation high resolution large solid angle kaon spectrometer (HKS).