skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Pseudohydroxide Extraction from Aqueous Sodium Hydroxide Solutions with 3,5-di-tert-Butylphenol in Isopar® L Modified with 1-Octanol

Journal Article · · Solvent Extraction and Ion Exchange, 24(3):359-386

Pseudohydroxide extraction (PHE) was investigated for recovery of sodium hydroxide (NaOH) from alkaline process solutions. PHE relies on the deprotonation of a lipophilic weak acid by hydroxide ion with concomitant transfer of sodium ion into an organic phase. Contact of the sodium-loaded organic phase with water results in the reconstitution of the extractant in the organic phase and NaOH in the aqueous phase, thus leading to a process in which NaOH equivalents are transferred from an alkaline feed solution to an aqueous stripping solution. In this work, we researched PHE using a process-friendly diluent—Isopar® L. The lipophilic cation exchanger 3,5-di-tert-butylphenol (35-DTBP) was used as the extractant. The Isopar® L diluent was modified with 1-octanol to improve its solvation properties and the solubility of 35-DTBP so that practical Na+ concentrations could be achieved in the process solvent. The PHE mechanism at process-relevant conditions was explored by Raman and FTIR spectroscopic measurements. Electrospray mass spectroscopic results indicated extensive aggregation of the sodium phenolate at high Na+ loading. An equilibrium computer modeling suggested that the Na+ extraction behavior can be largely explained by the formation of 1:1 and 1:2 Na/35-DTBP species in the organic phase. Extraction isotherms obtained using caustic leaching simulant solutions indicate the potential utility of this approach for recycling NaOH from complex alkaline mixtures.

Research Organization:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC05-76RL01830
OSTI ID:
883672
Report Number(s):
PNNL-SA-46094; SEIEDB; KP1302000; TRN: US0603542
Journal Information:
Solvent Extraction and Ion Exchange, 24(3):359-386, Vol. 24, Issue 3; ISSN 0736-6299
Country of Publication:
United States
Language:
English