skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Recent Developments in Neutrino Science: A Whole Lot About Almost Nothing

Conference ·
OSTI ID:883515

Results from Super-K, SNO, and KamLAND provide strong evidence that neutrinos undergo flavor-changing oscillations and therefore have non-zero mass. The {nu}-disappearance observations by KamLAND, assuming CPT conservation, point to matter enhanced (MSW) oscillations with large mixing angles as the solution to the solar neutrino problem--a result consistent with the MSW parameters recently defined by these experiments. This requires that the observed neutrino flavors (e, {mu}, and tau) are not mass eigenstates, but are linear combinations of the mass eigenstates of the neutrino. However, such oscillation experiments can only determine the differences in the masses of the neutrinos, not the absolute scale of neutrino mass. What can be inferred from these experiments is that at least one species of neutrino has a mass greater than 55 meV. In fact, the WMAP observations of large-scale structure point to a sum-neutrino mass of {approx} 0.7 eV (roughly 0.25 eV/species assuming democracy between the flavors). Furthermore, there is still the important issue of whether the neutrino and anti-neutrino are distinct particles (i.e. Dirac type) or not (Majorana type). The only way to answer both of these questions is through neutrinoless double beta decay (DBD) experiments. CUORE (Cryogenic Underground Observatory for Rare Events) is a proposed next generation experiment designed to search for the neutrinoless DBD of {sup 130}Te using a bolometric technique. The source/detector will be composed of 988 5 x 5 x 5-cm single crystals of TeO{sub 2} all housed in a common dilution refrigerator and operated at a temperature of 8-10 mK. The total mass of {sup 130}Te contained in CUORE will be approximately 203 kg. Attached to each crystal will be one or more neutron-transmutation doped (NTD) germanium thermistors that will measure the small temperature rise produced in a crystal when radiation is absorbed. A schematic illustration of the CUORE detector is shown in Figure 1. Details about the TeO{sub 2} cryogenic detector are contained in a NIM A paper and the physics potential of CUORE is described in a recent article in Astroparticle Physics. A complete description of the CUORE project is also available online. The estimated sensitivity of CUORE illustrated in Figure 2 is sufficient to cover essentially all of the so-called inverted mass hierarchy region deduced from the oscillation experiments. There are several compelling reasons to study {sup 130}Te DBD. The {beta}{beta} decay of {sup 130}Te has been observed in geo-chemical experiments. Thus, a direct laboratory measurement of the 2{nu} {beta}{beta} decay rate will provide an excellent calibration for 0{nu}-DBD. Second, because of its large decay energy and large expected nuclear matrix element, the half-life of {sup 130}Te is predicted to be shorter than that of a number of other candidate isotopes. Third, based on the sensitivity needed to reach the mass scales inferred from the above-mentioned oscillation experiments, the {sup 130}Te experiment can be done utilizing the natural abundance of {sup 130}Te (34%), without the time and expense of obtaining separated isotopes. Of all the proposed next generation DBD experiments, only CUORE can reach the needed sensitivity without isotopic enrichment.

Research Organization:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
W-7405-ENG-48
OSTI ID:
883515
Report Number(s):
UCRL-PROC-214964; TRN: US200615%%85
Resource Relation:
Conference: Presented at: International School on Contemporary Physics-III, Ulaanbaatar, Mongolia, Aug 07 - Aug 15, 2005
Country of Publication:
United States
Language:
English