Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Quantum Dot Solar Cells with Multiple Exciton Generation

Conference ·
OSTI ID:882797
We have measured the quantum yield of the multiple exciton generation (MEG) process in quantum dots (QDs) of the lead-salt semiconductor family (PbSe, PbTe, and PbS) using fs pump-probe transient absorption measurements. Very high quantum yields (up to 300%) for charge carrier generation from MEG have been measured in all of the Pb-VI QDs. We have calculated the potential maximum performance of various MEG QD solar cells in the detailed balance limit. We examined a two-cell tandem PV device with singlet fission (SF), QD, and normal dye (N) absorbers in the nine possible series-connected combinations to compare the tandem combinations and identify the combinations with the highest theoretical efficiency. We also calculated the maximum efficiency of an idealized single-gap MEG QD solar cell with M multiplications and its performance under solar concentration.
Research Organization:
National Renewable Energy Laboratory (NREL), Golden, CO.
Sponsoring Organization:
USDOE
DOE Contract Number:
AC36-99GO10337
OSTI ID:
882797
Report Number(s):
NREL/CP-590-38992
Country of Publication:
United States
Language:
English