skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Conventional Wet Chemistry ICP-AES Development for RPP-WTP AY-102/C-106 Melter Feed Slurry Simulants - A Statistical Review of the Results from the Phase I Study

Technical Report ·
DOI:https://doi.org/10.2172/881523· OSTI ID:881523

The River Protection Project (RPP)--Hanford Waste Treatment and Immobilization Plant (WTP) is to prepare and process High Level Waste (HLW) streams into glass waste forms that will meet HLW disposal requirements. Samples of HLW sludge and samples of this sludge mixed with glass-forming chemicals are to be taken and analyzed for process control. Glass characterization from the melter is not included in the scope. The development of viable analytical protocols to provide the required elemental analyses of these samples with rapid turnaround times (before and after addition of the glass-forming chemicals) has been defined as an RPP statement of work for the Analytical Development Section (ADS) of the Savannah River National Laboratory (SRNL). Wet chemistry is serving as the baseline comparison to laser ablation for method development. One of the simulants used in this study by ADS was AY-102/C-106 melter feed slurry simulant, a simulant used to represent HLW samples after the addition of glass-forming chemicals. Several different dissolution methods were used by ADS in preparing samples of this simulant for elemental analyses by inductively coupled plasma-atomic emission spectroscopy (ICP-AES). The measurements generated by this process were provided to SRNL's Statistical Consulting Section (SCS) for analysis. The measurement data generated for samples of the RPP-WTP AY-102/C-106 melter feed slurry simulant are presented in this report and the different approaches used to prepare the samples are statistically compared. Comparisons among three of the dissolution methods are highlighted in this analysis. The methods are: sodium peroxide fusion in nickel crucibles, acidification with HNO{sub 3}/HCL at room temperature, and cesium carbonate fusion in zirconium crucibles. A summary table of the measurement averages generated by the three methods is presented. The cesium carbonate fusion method yielded measurements with significantly different mean values from the other two preparation methods for several of the elements.

Research Organization:
Savannah River Site (SRS), Aiken, SC
Sponsoring Organization:
USDOE
DOE Contract Number:
DE-AC09-96SR18500
OSTI ID:
881523
Report Number(s):
WSRC-TR-2005-00166; TRN: US0603157
Country of Publication:
United States
Language:
English