Fringe Pattern of the PEP-II Synchrotron-Light Interferometers
Synchrotron-light interferometry is used to measure the vertical beam sizes in the high-energy and low-energy rings (HER and LER) of the PEP-II B Factory at SLAC. Light from a point in a dipole magnet is diffracted by two slits and then imaged onto a CCD camera. A curve fitting algorithm matches the measured interference fringes to a calculated pattern that includes the effect on the modulation depth of the fringes due to both the small but nonzero source size and the narrow bandpass of the optical filter. These formulas are derived here. Next, an additional focusing term from the primary mirror in the vacuum chamber is considered. The mirror needs extensive cooling due to the intense fan of synchrotron x-rays and is likely to have a slight stress-induced curvature, which must be considered to determine the true source size.
- Research Organization:
- Stanford Linear Accelerator Center (SLAC)
- Sponsoring Organization:
- USDOE
- DOE Contract Number:
- AC02-76SF00515
- OSTI ID:
- 878407
- Report Number(s):
- SLAC-TN-05-048
- Country of Publication:
- United States
- Language:
- English
Similar Records
Beam-Size Measurements on PEP-II Using Synchrotron-Light Interferometry
Optics Characterization and Correction at the PEP-II