Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

CONTROL OF FE(III) SITE OCCUPANCY ON THE RATE AND EXTENT OF MICROBIAL REDUCTION OF FE(III) IN NONTRONITE

Journal Article · · Geochimica et Cosmochimica Acta

A quantitative study was performed to understand how Fe(III) site occupancy controls Fe(III) bioreduction in nontronite by Shewanella putrefaciens CN32. NAu-1 and NAu-2 were nontronites and contained Fe(III) in different structure sites with 16% and 23% total iron (w/w), respectively, with almost all iron as Fe(III). Moessbauer spectroscopy showed that Fe(III) was present in the octahedral site in NAu-1 (with a small amount of goethite), but in both the tetrahedral and the octahedral sites in NAu-2. Moessbauer data further showed that the octahedral Fe(III) in NAu-2 existed in at least two environments- trans (M1) and cis (M2) sites. The microbial Fe(III) reduction in NAu-1 and NAu-2 was studied in batch cultures at a nontronite concentration of 5mg/mL in bicarbonate buffer with lactate as the electron donor. Fe(II) production in inoculated treatments was determined by extraction with 0.5 N HCl and compared to uninoculated controls to establish the extent of biological reduction. The resulting solids were characterized by X-ray diffraction (XRD), Moessbauer spectroscopy, and transmission electron microscopy (TEM). In the presence of an electron shuttle, anthraquinone-2,6-disulfonate (AQDS), the extent of bioreduction was 11-16% for NAu-1 but 28-32% for NAu-2. The extent of reduction in the absence of AQDS was only 5-7% in NAu-1 but 14-18% in NAu-2. The reduction rate was also faster in NAu-2 than that in NAu-1. Moessbauer data of the bioreduced nontronite materials indicated that the Fe(III) reduction in NAu-1 was mostly from the presence of goethite, whereas the reduction in NAu-2 was due to the presence of the tetrahedral and trans-octahedral Fe(III) in the structure. The measured aqueous Fe(II) was negligible [< 2.5% of the total biogenic Fe(II)]. As a result of bioreduction, the average nontronite particle thickness remained nearly the same (from 2.1 to 2.5 nm) for NAu-1, but decreased significantly from 6 to 3.5 nm for NAu-2 with a concomitant change in crystal size distribution. The decrease in crystal size suggests reductive dissolution of nontronite NAu-2, which was supported by aqueous solution chemistry (i.e., aqueous Si). These data suggest that the more extensive Fe(III) bioreduction in NAu-2 was due to the presence of the tetrahedral and the trans-octahedral Fe(III), which was presumed to be more reducible. The biogenic Fe(II) was not associated with biogenic solids such as siderite or green rust or in the aqueous solution. We infer that it may be either adsorbed onto surfaces of nontronite particles/bacteria and in the structure of nontronite. Furthermore, we have demonstrated that natural nontronite clays were capable of supporting cell growth even in non-growth medium, possibly due to presence of naturally existing nutrients in the nontronite clays. These results suggest that crystal chemical environment of Fe(III) is an important determinant in controlling the rate and extent of microbial reduction of Fe(III) in nontronite.

Research Organization:
Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC05-76RL01830
OSTI ID:
876905
Report Number(s):
PNWD-SA-6882; 3157; KP1303000
Journal Information:
Geochimica et Cosmochimica Acta, Journal Name: Geochimica et Cosmochimica Acta Journal Issue: 23 Vol. 69; ISSN GCACAK; ISSN 0016-7037
Country of Publication:
United States
Language:
English

Similar Records

Influence of Biogenic Fe(II) on the Extent of Microbial Reduction of Fe(III) in Clay Minerals Nontronite, Illite, and Chlorite
Journal Article · Wed Feb 28 23:00:00 EST 2007 · Geochimica et Cosmochimica Acta, 71(5):1145-1158 · OSTI ID:909233

Role of structural Fe in nontronite NAu-1 and dissolved Fe(II) in redox transformations of arsenic and antimony
Journal Article · Thu Nov 01 00:00:00 EDT 2012 · Geochim. Cosmochim. Acta · OSTI ID:1050740

Reductive Biotransformation of Fe in Shale-Limestone Saprolite Containing Fe(III) Oxides and Fe(II)/Fe(III) Phyllosilicates
Journal Article · Sat Jul 15 00:00:00 EDT 2006 · Geochimica et Cosmochimica Acta, 70(14):3662–3676 · OSTI ID:887009