SPH and Material Failure: Progress Report
Smoothed Particle Hydrodynamics (SPH) is a meshless Lagrangian technique for modeling hydrodynamics, and as such offers some unique advantages when applied to problems of material failure and breakup. The two most important of these advantages are: (1) SPH is Lagrangian and robust--i.e., it is never necessary to advect or remap. Damage models typically involve a number of complex history variables (such as the damage associated with the Lagrangian mass, crack orientations, etc.), and advecting these quantities as is required in a mesh based algorithm is a very challenging problem. (2) SPH allows the Lagrangian points to move about, reconnect, or separate as dictated by the material flow. This naturally allows for the points to move apart as distinct fragments of material form, resulting in gaps or cracks between the fragments. Typically mesh based algorithms represent the ''cracks'' between fragments as zones of failed material, which is quite different than allowing voids devoid of material to form.
- Research Organization:
- Lawrence Livermore National Laboratory (LLNL), Livermore, CA
- Sponsoring Organization:
- USDOE
- DOE Contract Number:
- W-7405-ENG-48
- OSTI ID:
- 875378
- Report Number(s):
- UCRL-CONF-211403
- Country of Publication:
- United States
- Language:
- English
Similar Records
RHALE: A MMALE shock physics code for arbitrary meshes
RHALE: A MMALE shock physics code for arbitrary meshes