Microscopic failure behavior of nanoporous Gold
Nanoporous metals have recently attracted considerable interest fueled by potential sensor and actuator applications. One of the key issues in this context is the synthesis of high yield strength materials. Nanoporous Au (np-Au) has been suggested as a candidate due to its monolithic character. The material can be synthesized by dealloying Ag-Au alloys, and exhibits an open sponge-like morphology of interconnecting Au ligaments with a typical pore size distribution on the nanometer length scale. Unfortunately, very little is known about the mechanical properties of np-Au besides a length-scale dependent ductile-brittle transition. A key question in this context is: what causes the macroscopic brittleness of np-Au? Is the normal dislocation-mediated plastic deformation suppressed in nanoscale Au ligaments, or is the brittleness a consequence of the macroscopic morphology? Here, we report on the fracture behavior of nanoporous Au studied by scanning electron microscopy. Specifically, we demonstrate the microscopic ductility of nanometer-sized Au ligaments. The observed fracture behavior seems to be general for nanoporous metals, and can be understood in terms of simple fuse networks.
- Research Organization:
- Lawrence Livermore National Laboratory (LLNL), Livermore, CA
- Sponsoring Organization:
- USDOE
- DOE Contract Number:
- W-7405-ENG-48
- OSTI ID:
- 859912
- Report Number(s):
- UCRL-JRNL-209008
- Journal Information:
- Applied Physics Letters, Journal Name: Applied Physics Letters Vol. 87; ISSN APPLAB; ISSN 0003-6951
- Country of Publication:
- United States
- Language:
- English
Similar Records
Mechanical properties of nanoporous gold in tension
Toward digitally controlled catalyst architectures: Hierarchical nanoporous gold via 3D printing