skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: First Principles Calculations of the Interaction of Blast Waves with Aqueous Foams

Conference ·
OSTI ID:8466

A series of two-dimensional hydrodynamic calculations using the two-dimensional Second- order Hydrodynamic Automated Mesh Refinement Code (SHAMRC) developed by Applied Research Associates, Inc. (ARA), was made with the objective of understanding the behavior of aqueous foams in the presence of a C4-generated blast wave. A full three-phase water equation-of-state was incorporated in the first calculation. Comparison of the results of the first calculation with experimental data collected by Sandia National Laboratories (SNL) indicated that the interaction was much more complicated than could be represented by a mixture of detonation products, air, and water in local temperature and pressure equilibrium. Other models were incorporated in the code to examine the effects of thermal non-equilibrium between water and the gases and allowed for two-phase flow. The water droplets were allowed to slip relative to the gas velocity, providing non-equilibrium for the velocity distribution. These models permitted heated liquid droplets to be accelerated at high pressures and transported through and ahead of the decaying shock front. The droplets then exchanged momentum and energy with the foam ahead of the shock and preconditioned the medium through which the shock was propagating. This process had the effect of diffusing the shock front and its associated energy. These relatively high resolution calculations develop numerical representations of the Rayleigh-Taylor instabilities at the detonation products/foam interface. This unstable interface plays in important role in understanding the behavior of the interaction of the detonation products with the foam. Figure 4 clearly shows the developing instabilities at the interface and an inward facing shock at a radius of 25 cm. The results of the calculations using the various models can be edited to provide the total energy exchanged between materials, the fraction of water vaporized, and the extent of detonation products as a function of time.

Research Organization:
Sandia National Laboratories (SNL), Albuquerque, NM, and Livermore, CA (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC04-94AL85000
OSTI ID:
8466
Report Number(s):
SAND99-1587C; ON: DE00008466
Resource Relation:
Conference: Topical Conference on Shock Compression of Condensed Matter; Snowbird, UT; 06/27-07/02/1999
Country of Publication:
United States
Language:
English