skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Nuclear reactions with 11C and 14O radioactive ion beams

Thesis/Dissertation ·
DOI:https://doi.org/10.2172/840236· OSTI ID:840236
 [1]
  1. Univ. of California, Berkeley, CA (United States)

Radioactive ion beams (RIBs) have been shown to be a useful tool for studying proton-rich nuclides near and beyond the proton dripline and for evaluating nuclear models. To take full advantage of RIBs, Elastic Resonance Scattering in Inverse Kinematics with Thick Targets (ERSIKTT), has proven to be a reliable experimental tool for investigations of proton unbound nuclei. Following several years of effort, Berkeley Experiments with Accelerated Radioactive Species (BEARS), a RIBs capability, has been developed at the Lawrence Berkeley National Laboratory's 88-Inch Cyclotron. The current BEARS provides two RIBs: a 11C beam of up to 2x108 pps intensity on target and an 14O beam of up to 3x104 pps intensity. While the development of the 11C beam has been relatively easy, a number of challenges had to be overcome to obtain the 14O beam. The excellent 11C beam has been used to investigate several reactions. The first was the 197Au(11C,xn)208-xnAt reaction, which was used to measure excitation functions for the 4n to 8n exit channels. The measured cross sections were generally predicted quite well using the fusion-evaporation code HIVAP. Possible errors in the branching ratios of ?? decays from At isotopes as well as the presence of incomplete fusion reactions probably contribute to specific overpredictions. 15F has been investigated by the p(14O,p)14O reaction with the ERSIKTT technology. Several 14O+p runs have been performed. Excellent energy calibration was obtained using resonances from the p(14N,p)14N reaction in inverse kinematics, and comparing the results to those obtained earlier with normal kinematics. The differences between 14N+p and 14O+p in the stopping power function have been evaluated for better energy calibration. After careful calibration, the energy levels of 15F were fitted with an R-matrix calculation. Spins and parities were assigned to the two observed resonances. This new measurement of the 15F ground state supports the disappearance of the Z = 8 proton magic number for odd Z, Tz=-3/2 nuclei. It is expected that future work on proton-rich nuclides will rely heavily on RIBs and/or mass separators. Currently, radioactive ion beam intensities are sufficient for the study of a reasonable number of very proton-rich nuclides.

Research Organization:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Organization:
USDOE Office of Science (SC), Nuclear Physics (NP)
DOE Contract Number:
AC03-76SF00098
OSTI ID:
840236
Report Number(s):
LBNL-56744; R&D Project: 464501; TRN: US0501872
Resource Relation:
Other Information: TH: Thesis (Ph.D.); Submitted to the UNIVERSITY OF CALIFORNIA, BERKELEY, CA (US); PBD: 9 Dec 2004
Country of Publication:
United States
Language:
English