skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Laser ablation of electronic materials including the effects of energy coupling and plasma interactions

Thesis/Dissertation ·
OSTI ID:840050

Many laser ablation applications such as laser drilling and micromachining generate cavity structures. The study of laser ablation inside a cavity is of both fundamental and practical significance. In this dissertation, cavities with different aspect ratios (depth/diameter) were fabricated in fused silica by laser micromachining. Pulsed laser ablation in the cavities was studied and compared with laser ablation on a flat surface. The formation of laser-induced plasmas in the cavities and the effects of the cavities on the ablation processes were investigated. The temperatures and electron number densities of the resulting laser-induced plasmas in the cavities were determined from spectroscopic measurements. Reflection and confinement effects by the cavity walls and plasma shielding were discussed to explain the increased temperature and electron number density with respect to increasing cavity aspect ratio. The temporal variations of the plasma temperature and electron number density inside the cavity decreased more rapidly than outside the cavity. The effect of laser energy on formation of a plasma inside a cavity was also investigated. Propagation of the shock wave generated during pulsed laser ablation in cavities was measured using laser shadowgraph imaging and compared with laser ablation on a flat surface. It is found that outside the cavity, after about 30 ns the radius of the expanding shock wave was proportional to t2/5, which corresponds to a spherical blast wave. The calculated pressures and temperatures of the shocked air outside of the cavities were higher than those obtained on the flat surface. Lasers with femtosecond pulse duration are receiving much attention for direct fabrication of microstructures due to their capabilities of high-precision ablation with minimal damage to the sample. We have also performed experimental studies of pulsed femtosecond laser ablation on the flat surface of silicon samples and compared results with pulsed nanosecond laser ablation at a ultraviolet wavelength (266 nm). Crater depth measurements indicated that ablation efficiency was enhanced for UV femtosecond laser pulses. The electron number densities and temperatures of femtosecond-pulse plasmas decreased faster than nanosecond-pulse plasmas due to different energy deposition mechanisms. Plasma expansion in both the perpendicular and the lateral directions were studied.

Research Organization:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Organization:
USDOE Director. Office of Science. Office of Basic Energy Sciences (US)
DOE Contract Number:
AC03-76SF00098
OSTI ID:
840050
Report Number(s):
LBNL-56747; R&D Project: 478101; TRN: US200509%%777
Resource Relation:
Other Information: TH: Thesis (Ph.D.); Submitted to the Univ. of California, Berkeley, CA (US); PBD: 10 Dec 2004
Country of Publication:
United States
Language:
English