skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Novel QCD Aspects of Hard Diffraction,Antishadowing, and Single-Spin Asymmetries

Technical Report ·
DOI:https://doi.org/10.2172/839974· OSTI ID:839974

It is usually assumed--following the parton model--that the leading-twist structure functions measured in deep inelastic lepton-proton scattering are simply the probability distributions for finding quarks and gluons in the target nucleon. In fact, gluon exchange between the outgoing quarks and the target spectators effects the leading-twist structure functions in a profound way, leading to diffractive leptoproduction processes, shadowing and antishadowing of nuclear structure functions, and target spin asymmetries, physics not incorporated in the light-front wavefunctions of the target computed in isolation. In particular, final-state interactions from gluon exchange lead to single-spin asymmetries in semi-inclusive deep inelastic lepton-proton scattering which are not power-law suppressed in the Bjorken limit. The shadowing and antishadowing of nuclear structure functions in the Gribov-Glauber picture is due respectively to the destructive and constructive interference of amplitudes arising from the multiple-scattering of quarks in the nucleus. The effective quark-nucleon scattering amplitude includes Pomeron and Odderon contributions from multi-gluon exchange as well as Reggeon quark-exchange contributions. Part of the anomalous NuTeV result for sin{sup 2} {theta}{sub W} could be due to the non-universality of nuclear antishadowing for charged and neutral currents. Detailed measurements of the nuclear dependence of individual quark structure functions are thus needed to establish the distinctive phenomenology of shadowing and antishadowing and to make the NuTeV results definitive. I also discuss diffraction dissociation as a tool for resolving hadron substructure Fock state by Fock state and for producing leading heavy quark systems.

Research Organization:
SLAC National Accelerator Lab., Menlo Park, CA (United States)
Sponsoring Organization:
USDOE Office of Science (SC)
DOE Contract Number:
AC02-76SF00515
OSTI ID:
839974
Report Number(s):
SLAC-PUB-10777; TRN: US0503432
Country of Publication:
United States
Language:
English