skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The Structure of Magnetocentrifugal Jets and Winds I. Steady Mass Loading

Technical Report ·
DOI:https://doi.org/10.2172/839785· OSTI ID:839785

We present the results of a series of time-dependent numerical simulations of cold, magnetocentrifugally launched winds from accretion disks. The goal of this study is to determine how the mass loading from the disk affects the structure and dynamics of the wind for a given distribution of magnetic field. Our simulations span four and half decades of mass loading; in the context of a disk with a launching region from 0.1 AU to 1.0 AU around a 1M{circle_dot} star and a field strength of about 20 G at the inner disk edge, this amounts to mass loss rates of 1 x 10{sup -9} - 3 x 10{sup -5} M{circle_dot} yr{sup -1} from each side of the disk. We find that, as expected intuitively, the degree of collimation of the wind increases with mass loading; however even the ''lightest'' wind simulated is significantly collimated compared with the force-free magnetic configuration of the same magnetic flux distribution at the launching surface, which becomes radial at large distances. The implication is that for flows from young stellar objects a radial field approximation is inappropriate. Surprisingly, the terminal velocity of the wind and the magnetic lever arm are still well-described by the analytical solutions for a radial field geometry. We also find that the isodensity contours and Alfven surface are very nearly self-similar in mass loading. The wind becomes unsteady above some critical mass loading rate. The exact value of the critical rate depends on the (small) velocity with which we inject the material into the wind. For a small enough injection speed, we are able to obtain the first examples of a class of heavily-loaded magnetocentrifugal winds with magnetic fields completely dominated by the toroidal component all the way to the launching surface. The stability of such toroidally dominated winds in 3D will be the subject of a future investigation.

Research Organization:
SLAC National Accelerator Lab., Menlo Park, CA (United States)
Sponsoring Organization:
USDOE Office of Science (SC)
DOE Contract Number:
AC02-76SF00515
OSTI ID:
839785
Report Number(s):
SLAC-PUB-10914; TRN: US200516%%478
Country of Publication:
United States
Language:
English