skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Drift-Scale Radionuclide Transport

Abstract

The purpose of this model report is to document the drift scale radionuclide transport model, taking into account the effects of emplacement drifts on flow and transport in the vicinity of the drift, which are not captured in the mountain-scale unsaturated zone (UZ) flow and transport models ''UZ Flow Models and Submodels'' (BSC 2004 [DIRS 169861]), ''Radionuclide Transport Models Under Ambient Conditions'' (BSC 2004 [DIRS 164500]), and ''Particle Tracking Model and Abstraction of Transport Process'' (BSC 2004 [DIRS 170041]). The drift scale radionuclide transport model is intended to be used as an alternative model for comparison with the engineered barrier system (EBS) radionuclide transport model ''EBS Radionuclide Transport Abstraction'' (BSC 2004 [DIRS 169868]). For that purpose, two alternative models have been developed for drift-scale radionuclide transport. One of the alternative models is a dual continuum flow and transport model called the drift shadow model. The effects of variations in the flow field and fracture-matrix interaction in the vicinity of a waste emplacement drift are investigated through sensitivity studies using the drift shadow model (Houseworth et al. 2003 [DIRS 164394]). In this model, the flow is significantly perturbed (reduced) beneath the waste emplacement drifts. However, comparisons of transport in this perturbedmore » flow field with transport in an unperturbed flow field show similar results if the transport is initiated in the rock matrix. This has led to a second alternative model, called the fracture-matrix partitioning model, that focuses on the partitioning of radionuclide transport between the fractures and matrix upon exiting the waste emplacement drift. The fracture-matrix partitioning model computes the partitioning, between fractures and matrix, of diffusive radionuclide transport from the invert (for drifts without seepage) into the rock water. The invert is the structure constructed in a drift to provide the floor of the drift. The reason for introducing the fracture-matrix partitioning model is to broaden the conceptual model for flow beneath waste emplacement drifts in a way that does not rely on the specific flow behavior predicted by a dual continuum model and to ensure that radionuclide transport is not underestimated. The fracture-matrix partitioning model provides an alternative method of computing the partitioning of radionuclide releases from drifts without seepage into rock fractures and rock matrix. Drifts without seepage are much more likely to have a significant fraction of radionuclide releases into the rock matrix, and therefore warrant additional attention in terms of the partitioning model used for TSPA.« less

Authors:
Publication Date:
Research Org.:
Yucca Mountain Project, Las Vegas, Nevada (US)
Sponsoring Org.:
US Department of Energy (US)
OSTI Identifier:
837622
Report Number(s):
MDL-NBS-HS-000016, REV 01
DOC.20040927.0031, DC41586; TRN: US0502846
DOE Contract Number:
AC28-01RW12101
Resource Type:
Technical Report
Resource Relation:
Other Information: PBD: 22 Sep 2004
Country of Publication:
United States
Language:
English
Subject:
12 MANAGEMENT OF RADIOACTIVE WASTES, AND NON-RADIOACTIVE WASTES FROM NUCLEAR FACILITIES; FLOW MODELS; GEOLOGIC FRACTURES; RADIONUCLIDE MIGRATION; RADIOACTIVE WASTE FACILITIES; YUCCA MOUNTAIN; CONTAINMENT SYSTEMS

Citation Formats

J. Houseworth. Drift-Scale Radionuclide Transport. United States: N. p., 2004. Web. doi:10.2172/837622.
J. Houseworth. Drift-Scale Radionuclide Transport. United States. doi:10.2172/837622.
J. Houseworth. Wed . "Drift-Scale Radionuclide Transport". United States. doi:10.2172/837622. https://www.osti.gov/servlets/purl/837622.
@article{osti_837622,
title = {Drift-Scale Radionuclide Transport},
author = {J. Houseworth},
abstractNote = {The purpose of this model report is to document the drift scale radionuclide transport model, taking into account the effects of emplacement drifts on flow and transport in the vicinity of the drift, which are not captured in the mountain-scale unsaturated zone (UZ) flow and transport models ''UZ Flow Models and Submodels'' (BSC 2004 [DIRS 169861]), ''Radionuclide Transport Models Under Ambient Conditions'' (BSC 2004 [DIRS 164500]), and ''Particle Tracking Model and Abstraction of Transport Process'' (BSC 2004 [DIRS 170041]). The drift scale radionuclide transport model is intended to be used as an alternative model for comparison with the engineered barrier system (EBS) radionuclide transport model ''EBS Radionuclide Transport Abstraction'' (BSC 2004 [DIRS 169868]). For that purpose, two alternative models have been developed for drift-scale radionuclide transport. One of the alternative models is a dual continuum flow and transport model called the drift shadow model. The effects of variations in the flow field and fracture-matrix interaction in the vicinity of a waste emplacement drift are investigated through sensitivity studies using the drift shadow model (Houseworth et al. 2003 [DIRS 164394]). In this model, the flow is significantly perturbed (reduced) beneath the waste emplacement drifts. However, comparisons of transport in this perturbed flow field with transport in an unperturbed flow field show similar results if the transport is initiated in the rock matrix. This has led to a second alternative model, called the fracture-matrix partitioning model, that focuses on the partitioning of radionuclide transport between the fractures and matrix upon exiting the waste emplacement drift. The fracture-matrix partitioning model computes the partitioning, between fractures and matrix, of diffusive radionuclide transport from the invert (for drifts without seepage) into the rock water. The invert is the structure constructed in a drift to provide the floor of the drift. The reason for introducing the fracture-matrix partitioning model is to broaden the conceptual model for flow beneath waste emplacement drifts in a way that does not rely on the specific flow behavior predicted by a dual continuum model and to ensure that radionuclide transport is not underestimated. The fracture-matrix partitioning model provides an alternative method of computing the partitioning of radionuclide releases from drifts without seepage into rock fractures and rock matrix. Drifts without seepage are much more likely to have a significant fraction of radionuclide releases into the rock matrix, and therefore warrant additional attention in terms of the partitioning model used for TSPA.},
doi = {10.2172/837622},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Wed Sep 22 00:00:00 EDT 2004},
month = {Wed Sep 22 00:00:00 EDT 2004}
}

Technical Report:

Save / Share:
  • The purpose of this Model Report is to document two models for drift-scale radionuclide transport. This has been developed in accordance with ''Technical Work Plan for: Performance Assessment Unsaturated Zone'' (Bechtel SAIC Company, LLC (BSC) 2002 [160819]), which includes planning documents for the technical work scope, content, and management of this Model Report in Section 1.15, Work Package AUZM11, ''Drift-Scale Radionuclide Transport.'' The technical work scope for this Model Report calls for development of a process-level model and an abstraction model representing diffusive release from the invert to the rocks, partitioned between fracture and matrix, as compared to the fracture-releasemore » approach used in the Site Recommendation. The invert is the structure constructed in a drift to provide the floor of that drift. The plan for validation of the models documented in this Model Report is given in Section I-5 of Attachment I in BSC (2002 [160819]). Note that the model validation presented in Section 7 deviates from the technical work plan (BSC 2002 [160819], Section I-5) in that an independent technical review specifically for model validation has not been conducted, nor publication in a peer-reviewed journal. Model validation presented in Section 7 is based on corroboration with alternative mathematical models, which is also called out by the technical work plan (BSC 2002 [160819], Section I-5), and is sufficient based on the requirements of AP-SIII.10Q for model validation. See Section 7 for additional discussion. The phenomenon of flow and transport in the vicinity of the waste emplacement drift are evaluated in this model report under ambient thermal, chemical, and mechanical conditions. This includes the effects of water diversion around an emplacement drift and the flow and transport behavior expected in a fractured rock below the drift. The reason for a separate assessment of drift-scale transport is that the effects of waste emplacement drifts on flow are not captured in the flow fields used for radionuclide transport at the mountain scale (''UZ Flow Models and Submodels'', BSC 2003 [163045]).« less
  • Matrix Diffusion and Adsorption within a rock matrix are important mechanisms for retarding transport of radionuclides in fractured rock. Due to computational limitations and difficulties in characterizing complex subsurface systems, diffusive exchange between a fracture network and surrounding rock matrix is often modeled using simplified conceptual representations. There is significant uncertainty in “effective” parameters used in these models, such as the “effective matrix diffusivity”. Often, these parameters are estimated by fitting sparse breakthrough data, and estimated values fall outside meaningful ranges, because simplified interpretive models do not consider complex three-dimensional flow. There is limited understanding of the relationship between themore » effective parameters and rock mass characteristics including network structure and matrix properties. There is also evidence for an apparent scale-dependence in “effective matrix diffusion” coefficients. These observations raise questions on whether fracture-matrix interaction parameters estimated from small-scale tracer tests can be used for predicting radionuclide fate and transport at the scale of DOE field sites. High-resolution three-dimensional Discrete-Fracture-Network-Matrix (DFNM) models based on well-defined local scale transport equations can help to address some of these questions. Due to tremendous advances in computational technology over the last 10 years, DFNM modeling in relatively large domains is now feasible. The overarching objective of our research is to use DFNM modeling to improve fundamental understanding of how effective parameters in conceptual models are related to fracture network structure and matrix properties. An advanced three-dimensional DFNM model is being developed, which combines upscaled particle-tracking algorithms for fracture-matrix interaction and a parallel fracture-network flow simulator. The particle-tracking algorithms allow complexity in flow fields at different scales, and track transport across fracture-matrix interfaces based on rigorous local approximations to the transport equations. This modeling approach can incorporate aperture variability, multi-scale preferential flow and matrix heterogeneity. We developed efficient particle-tracking methods for handling matrix diffusion and adsorption on fracture walls and demonstrated their efficiency for use within the context of large-scale complex fracture network models with variability in apertures across a network of fractures and within individual fractures.« less
  • Matrix diffusion and adsorption within a rock matrix are widely regarded as important mechanisms for retarding the transport of radionuclides and other solutes in fractured rock (e.g., Neretnieks, 1980; Tang et al., 1981; Maloszewski and Zuber, 1985; Novakowski and Lapcevic, 1994; Jardine et al., 1999; Zhou and Xie, 2003; Reimus et al., 2003a,b). When remediation options are being evaluated for old sources of contamination, where a large fraction of contaminants reside within the rock matrix, slow diffusion out of the matrix greatly increases the difficulty and timeframe of remediation. Estimating the rates of solute exchange between fractures and the adjacentmore » rock matrix is a critical factor in quantifying immobilization and/or remobilization of DOE-relevant contaminants within the subsurface. In principle, the most rigorous approach to modeling solute transport with fracture-matrix interaction would be based on local-scale coupled advection-diffusion/dispersion equations for the rock matrix and in discrete fractures that comprise the fracture network (Discrete Fracture Network and Matrix approach, hereinafter referred to as DFNM approach), fully resolving aperture variability in fractures and matrix property heterogeneity. However, such approaches are computationally demanding, and thus, many predictive models rely upon simplified models. These models typically idealize fracture rock masses as a single fracture or system of parallel fractures interacting with slabs of porous matrix or as a mobile-immobile or multi-rate mass transfer system. These idealizations provide tractable approaches for interpreting tracer tests and predicting contaminant mobility, but rely upon a fitted effective matrix diffusivity or mass-transfer coefficients. However, because these fitted parameters are based upon simplified conceptual models, their effectiveness at predicting long-term transport processes remains uncertain. Evidence of scale dependence of effective matrix diffusion coefficients obtained from tracer tests highlights this point and suggests that the underlying mechanisms and relationship between rock and fracture properties are not fully understood in large complex fracture networks. In this project, we developed a high-resolution DFN model of solute transport in fracture networks to explore and quantify the mechanisms that control transport in complex fracture networks and how these may give rise to observed scale-dependent matrix diffusion coefficients. Results demonstrate that small scale heterogeneity in the flow field caused by local aperture variability within individual fractures can lead to long-tailed breakthrough curves indicative of matrix diffusion, even in the absence of interactions with the fracture matrix. Furthermore, the temporal and spatial scale dependence of these processes highlights the inability of short-term tracer tests to estimate transport parameters that will control long-term fate and transport of contaminants in fractured aquifers.« less
  • Independent of the methods of nuclear waste disposal, the degradation of packaging materials could lead to mobilization and transport of radionuclides into the geosphere. This process can be significantly accelerated due to the association of radionuclides with the backfill materials or mobile colloids in groundwater. The transport of these colloids is complicated by the inherent coupling of physical and chemical heterogeneities (e.g., pore space geometry, grain size, charge heterogeneity, and surface hydrophobicity) in natural porous media that can exist on the length scale of a few grains. In addition, natural colloids themselves are often heterogeneous in their surface properties (e.g.,more » clay platelets possess opposite charges on the surface and along the rim). Both physical and chemical heterogeneities influence the transport and retention of radionuclides under various groundwater conditions. However, the precise mechanisms how these coupled heterogeneities influence colloidal transport are largely elusive. This knowledge gap is a major source of uncertainty in developing accurate models to represent the transport process and to predict distribution of radionuclides in the geosphere.« less
  • The finite element model, FETRA, is an unsteady, two-dimensional (longitudinal and lateral) model for simulating the transport of sediment and contaminants (e.g., radionuclides, heavy metals, pesticides) in coastal waters. FETRA includes major transport and fate mechanisms explicitly, including sediment/contaminant interactions. The purpose of the study was to test FETRA model with available field data and was not intended to assess the potential impact of the Windscale Nuclear Fuel Reprocessing Plant on the Irish Sea. The model was tested by applying it to the Irish Sea to simulate wind-generated waves and the migration of sediment and /sup 137/Cs. The model predictedmore » distributions of suspended sand; suspended silt; suspended clay; /sup 137/Cs sorbed by each of the three sizes of suspended sediments; dissolved /sup 137/Cs; bed sediment size fractions; and /sup 137/Cs sorbed by bed sand, bed silt, and bed clay over a two-month period in 1974. FETRA generally predicted reasonable migration patterns for the sediments and /sup 137/Cs. The prediction of /sup 137/Cs distributions can be further improved by using a finer grid near the radionuclide release point. The study results indicate that FETRA can simulate the complex phenomena involved in sediment and contaminant transport in coastal waters. However, we recommend that FETRA be tested further at other field sites where the necessary field data are available to validate the model. 47 references, 64 figures, 4 tables.« less