Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Time Motion Study for Modular Caustic Solvent Extraction Unit

Conference ·
OSTI ID:835552
The Defense Waste Processing Facilities (DWPF) at the Savannah River Site (SRS) is used to process high-level radioactive waste from the Tank Farm into borosilicate glass to reduce the mobility of the radionuclides and has processed and vitrified nuclear wastes into canisters for long-term disposal since FY96. All wastes vitrified to date in DWPF are ''sludge only'' wastes. The old salt waste processing technology, ITP, was suspended in FY98 due to benzene build-up inside the tank. The new selected technologies for treating the salt waste are Actinide Removal Process (ARP) and Caustic Side Solvent Extraction process (CSSX). The Modular CSSX Unit (MCU) is a cesium removal process that will be operated downstream of the ARP. The MCU is a short-term method for cesium removal, which uses the same technology as the Salt Waste Processing Facility (SWPF). Once the SWPF becomes operational, the MCU will be shut down. The modeling request is from the MCU project to verify the validity of its Concept Design Package. The modeling task is not typical because there are five different facilities/projects/processes involved, i.e., Tank Farm, ARP, MCU, Saltstone, and DWPF. Each facility, project, and process has their own management team and organization, with its own fiscal responsibility and performance accountability. In addition, from a task cost perspective, MCU desires to minimize modeling not directly associated with their facility. The balancing of comprehensive analysis with limited granularity is challenging. The customer expectation is the model should be small and delivered within weeks. Modeling a stand-alone MCU will not yield overall meaningful results because it can be expected that most problems will occur at interfaces with other facilities. This paper discusses how we set out our modeling strategy, overcame obstacles, avoided touchy issues, and delivered the modeling result on time and on budget.
Research Organization:
Savannah River Site (US)
Sponsoring Organization:
US Department of Energy (US)
DOE Contract Number:
AC09-96SR18500
OSTI ID:
835552
Report Number(s):
WSRC-MS-2004-00703
Country of Publication:
United States
Language:
English