skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Heteronuclear cross-polarization in multinuclear multidimensional NMR: Prospects for triple-resonance CP

Conference ·
OSTI ID:83409
;  [1]
  1. Univ. of Michigan, Ann Arbor, MI (United States)

Heteronuclear multiple-pulse-based Cross Polarization (HECP) between scalar coupled spins is gaining an important role in high-resolution multidimensional NMR of isotopically labeled biomolecules, especially in experiments involving net magnetization transfer. It has generally been observed that in these situations, the performance of HECP is superior to that of INEPT-based sequences. In particular, HECP-based three-dimensional HCCH spectroscopy is more efficient than the INEPT version of the same experiment. Differences in sensitivity have been intuitively attributed to relaxation effects and technical factors such as radiofrequency (rf) inhomogeneity We present theoretical analyses and computer simulations to probe the effects of these factors. Relaxation effects were treated phenomenologically; we found that relaxation differences are relatively small (up to 25%) between pulsed-free-precession (INEPT) and HECP-although always in favor of HECP. We explored the rf effects by employing a Gaussian distribution of rf amplitude over sample volume. We found that inhomogeneity effects significantly favor HECP over INEPT, especially under conditions of {open_quotes}matched {close_quotes} inhomogeneity in the two rf coils. The differences in favor of HECP indicate that an extension of HECP to triple resonance experiments (TRCP) in I -> S -> Q net transfers might yield better results relative to analogous INEPT-based net transfers. We theoretically analyze the possibilities of TRCP and find that transfer functions are critically dependent on the ratio J{sub IS}/J{sub SQ}. When J{sub IS} equals J{sub SQ}, we find that 100% transfer is possible for truly simultaneous TRCP and this transfer is obtained in a time 1.41 /J. The TRCP time requirement compares favorably with optimally concatenated INEPT-transfers, where net transfer I -> S -> Q is complete at 1.5 /J.

Research Organization:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
OSTI ID:
83409
Report Number(s):
LA-12893-C; CONF-9403228-; ON: DE95012795; TRN: 95:004732-0040
Resource Relation:
Conference: Stable isotope applications in biomolecular structure and mechanisms, Santa Fe, NM (United States), 27-31 Mar 1994; Other Information: PBD: Dec 1994; Related Information: Is Part Of Stable isotope applications in biomolecular structure and mechanisms. A meeting to bring together producers and users of stable-isotope-labeled compounds to assess current and future needs; Trewhella, J.; Cross, T.A.; Unkefer, C.J. [eds.]; PB: 382 p.
Country of Publication:
United States
Language:
English