skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A STUDY OF THE EFFECTS OF POST-COMBUSTION AMMONIA INJECTION ON FLY ASH QUALITY: CHARACTERIZATION OF AMMONIA RELEASE FROM CONCRETE AND MORTARS CONTAINING FLY ASH AS A POZZOLANIC ADMIXTURE

Technical Report ·
DOI:https://doi.org/10.2172/833653· OSTI ID:833653

Work completed in this reporting period focused on finalization of the Work and Management Plan, sample acquisition and analysis, evaluation of ammonia measurement methods, and measurement of ammonia loss from mortar. All fly ash samples have been acquired and analyzed for chemical composition and particle fineness. Three non-ammoniated fly ash samples were obtained from power plants that do not inject ammonia for NOx or particulate control, while three ammoniated fly ashes originate from plants that inject ammonia into the flue gas. The fly ash sources were selected based on their marketability as concrete admixtures and ammonia content. Coarse and fine aggregates for mortar and concrete testing have also been secured and have been thoroughly characterized using ASTM methods. Methodologies for the measurement of ammonia in the gaseous and aqueous phase have been carefully considered in the context of their suitability for use in this project. These include ammonia detection tubes, carbon impregnated with sulfuric acid (CISA) tubes, titration, and electrochemical methods. It was concluded that each of these methods is potentially useful for different aspects of the project, depending on the phase and concentration of ammonia to be measured. Preparation of fly ash-containing mortars both with and without ammonia indicated that the ammonia has no significant influence on compressive strength. Finally, measurement of ammonia loss from mortar has begun and the results of several of these experiments are included herein. It has been found that, under the laboratory curing conditions devised, ammonia release from mortar occurs at a relatively rapid rate in the first 24 hours, proceeded by a much slower, essentially linear rate. Furthermore, at the end of the three-week experiments, it was calculated that greater than 80% of the initial ammonia concentration remained within the mortar.

Research Organization:
University of Kentucky Research Foundation (US)
Sponsoring Organization:
(US)
DOE Contract Number:
FC26-00NT40908
OSTI ID:
833653
Resource Relation:
Other Information: PBD: 11 Apr 2001
Country of Publication:
United States
Language:
English