Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

An iterative Riemann solver for systems of hyperbolic conservation law s, with application to hyperelastic solid mechanics

Journal Article · · Journal of Computational Physics
OSTI ID:829986

In this paper we present a general iterative method for the solution of the Riemann problem for hyperbolic systems of PDEs. The method is based on the multiple shooting method for free boundary value problems. We demonstrate the method by solving one-dimensional Riemann problems for hyperelastic solid mechanics. Even for conditions representative of routine laboratory conditions and military ballistics, dramatic differences are seen between the exact and approximate Riemann solution. The greatest discrepancy arises from misallocation of energy between compressional and thermal modes by the approximate solver, resulting in nonphysical entropy and temperature estimates. Several pathological conditions arise in common practice, and modifications to the method to handle these are discussed. These include points where genuine nonlinearity is lost, degeneracies, and eigenvector deficiencies that occur upon melting.

Research Organization:
Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, CA (US)
Sponsoring Organization:
USDOE Director. Office of Science. Office of Advanced Scientific Computing Research. Mathematical Information and Computational Sciences Division, Department of Energy Laboratory Directed Research and Development award; California Institute of Technology Center, Accelerated Strategic Computing Initiative. Academic Strategic Alliances Program. California Institute of Technology Center for the Simulation of Dynamic Response in Materials. Contract B341492 (US)
DOE Contract Number:
AC03-76SF00098
OSTI ID:
829986
Report Number(s):
LBNL--53795
Journal Information:
Journal of Computational Physics, Journal Name: Journal of Computational Physics Journal Issue: 1 Vol. 193; ISSN JCTPAH; ISSN 0021-9991
Country of Publication:
United States
Language:
English

Similar Records

A simple Riemann solver and high-order Godunov schemes for hyperbolic systems of conservation laws
Journal Article · Sun Oct 01 00:00:00 EDT 1995 · Journal of Computational Physics · OSTI ID:111287

Higher order Godunov methods for general systems of hyperbolic conservation laws
Journal Article · Thu Jun 01 00:00:00 EDT 1989 · J. Comput. Phys.; (United States) · OSTI ID:6024619

A new efficient formulation of the HLLEM Riemann solver for general conservative and non-conservative hyperbolic systems
Journal Article · Thu Dec 31 23:00:00 EST 2015 · Journal of Computational Physics · OSTI ID:22570207