skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: DEVELOPMENT OF ATTRITION RESISTANT IRON-BASED FISCHER-TROPSCH CATALYSTS

Abstract

Fischer-Tropsch (FT) synthesis to convert syngas (CO + H{sub 2}) derived from natural gas or coal to liquid fuels and wax is a well-established technology. For low H{sub 2} to CO ratio syngas produced from CO{sub 2} reforming of natural gas or from gasification of coal, the use of Fe catalysts is attractive because of their high water gas shift activity in addition to their high FT activity. Fe catalysts are also attractive due to their low cost and low methane selectivity. Because of the highly exothermic nature of the FT reaction, there has been a recent move away from fixed-bed reactors toward the development of slurry bubble column reactors (SBCRs) that employ 30 to 90 {micro}m catalyst particles suspended in a waxy liquid for efficient heat removal. However, the use of Fe FT catalysts in an SBCR has been problematic due to severe catalyst attrition resulting in fines that plug the filter employed to separate the catalyst from the waxy product. Fe catalysts can undergo attrition in SBCRs not only due to vigorous movement and collisions but also due to phase changes that occur during activation and reaction. The objectives of this research were to develop a better understandingmore » of the parameters affecting attrition of Fe F-T catalysts suitable for use in SBCRs and to incorporate this understanding into the design of novel Fe catalysts having superior attrition resistance. The catalysts were prepared by co-precipitation, followed by binder addition and spray drying at 250 C in a 1 m diameter, 2 m tall spray dryer. The binder silica content was varied from 0 to 20 wt %. The results show that use of small amounts of precipitated SiO{sub 2} alone in spray-dried Fe catalysts can result in good attrition resistance. All catalysts investigated with SiO{sub 2} wt% {le} 12 produced fines less than 10 wt% during the jet cup attrition test, making them suitable for long-term use in a slurry bubble column reactor. Thus, concentration rather than type of SiO{sub 2} incorporated into catalyst has a more critical impact on catalyst attrition resistance of spray-dried Fe catalysts. Lower amounts of SiO{sub 2} added to a catalyst give higher particle densities and therefore higher attrition resistances. In order to produce a suitable SBCR catalyst, however, the amount of SiO{sub 2} added has to be optimized to provide adequate surface area, particle density, and attrition resistance. Two of the catalysts with precipitated and binder silica were tested in Texas A&M University's CSTR (Autoclave Engineers). Spray-dried catalysts with compositions 100 Fe/5 Cu/4.2 K/11 (P) SiO{sub 2} and 100 Fe/5 Cu/4.2 K/1.1 (B) SiO{sub 2} have excellent selectivity characteristics (low methane and high C{sub 5}{sup +} yields), but their productivity and stability (deactivation rate) need to be improved. Mechanical integrity (attrition strength) of these two catalysts was markedly dependent upon their morphological features. The attrition strength of the catalyst made out of largely spherical particles (1.1 (B) SiO{sub 2}) was considerably higher than that of the catalyst consisting of irregularly shaped particles (11 (P) SiO{sub 2}).« less

Authors:
Publication Date:
Research Org.:
Hampton University (US)
Sponsoring Org.:
(US)
OSTI Identifier:
826366
DOE Contract Number:  
FG26-99FT40619
Resource Type:
Technical Report
Resource Relation:
Other Information: PBD: 1 Dec 2003
Country of Publication:
United States
Language:
English
Subject:
03 NATURAL GAS; 01 COAL, LIGNITE, AND PEAT; BINDERS; CATALYSTS; COAL; DEACTIVATION; GASIFICATION; LIQUID FUELS; METHANE; NATURAL GAS; PACKED BEDS; SILICA; SPRAY DRYING; SURFACE AREA; SYNTHESIS; WATER GAS

Citation Formats

Adeyiga, Adeyinka A. DEVELOPMENT OF ATTRITION RESISTANT IRON-BASED FISCHER-TROPSCH CATALYSTS. United States: N. p., 2003. Web. doi:10.2172/826366.
Adeyiga, Adeyinka A. DEVELOPMENT OF ATTRITION RESISTANT IRON-BASED FISCHER-TROPSCH CATALYSTS. United States. doi:10.2172/826366.
Adeyiga, Adeyinka A. Mon . "DEVELOPMENT OF ATTRITION RESISTANT IRON-BASED FISCHER-TROPSCH CATALYSTS". United States. doi:10.2172/826366. https://www.osti.gov/servlets/purl/826366.
@article{osti_826366,
title = {DEVELOPMENT OF ATTRITION RESISTANT IRON-BASED FISCHER-TROPSCH CATALYSTS},
author = {Adeyiga, Adeyinka A},
abstractNote = {Fischer-Tropsch (FT) synthesis to convert syngas (CO + H{sub 2}) derived from natural gas or coal to liquid fuels and wax is a well-established technology. For low H{sub 2} to CO ratio syngas produced from CO{sub 2} reforming of natural gas or from gasification of coal, the use of Fe catalysts is attractive because of their high water gas shift activity in addition to their high FT activity. Fe catalysts are also attractive due to their low cost and low methane selectivity. Because of the highly exothermic nature of the FT reaction, there has been a recent move away from fixed-bed reactors toward the development of slurry bubble column reactors (SBCRs) that employ 30 to 90 {micro}m catalyst particles suspended in a waxy liquid for efficient heat removal. However, the use of Fe FT catalysts in an SBCR has been problematic due to severe catalyst attrition resulting in fines that plug the filter employed to separate the catalyst from the waxy product. Fe catalysts can undergo attrition in SBCRs not only due to vigorous movement and collisions but also due to phase changes that occur during activation and reaction. The objectives of this research were to develop a better understanding of the parameters affecting attrition of Fe F-T catalysts suitable for use in SBCRs and to incorporate this understanding into the design of novel Fe catalysts having superior attrition resistance. The catalysts were prepared by co-precipitation, followed by binder addition and spray drying at 250 C in a 1 m diameter, 2 m tall spray dryer. The binder silica content was varied from 0 to 20 wt %. The results show that use of small amounts of precipitated SiO{sub 2} alone in spray-dried Fe catalysts can result in good attrition resistance. All catalysts investigated with SiO{sub 2} wt% {le} 12 produced fines less than 10 wt% during the jet cup attrition test, making them suitable for long-term use in a slurry bubble column reactor. Thus, concentration rather than type of SiO{sub 2} incorporated into catalyst has a more critical impact on catalyst attrition resistance of spray-dried Fe catalysts. Lower amounts of SiO{sub 2} added to a catalyst give higher particle densities and therefore higher attrition resistances. In order to produce a suitable SBCR catalyst, however, the amount of SiO{sub 2} added has to be optimized to provide adequate surface area, particle density, and attrition resistance. Two of the catalysts with precipitated and binder silica were tested in Texas A&M University's CSTR (Autoclave Engineers). Spray-dried catalysts with compositions 100 Fe/5 Cu/4.2 K/11 (P) SiO{sub 2} and 100 Fe/5 Cu/4.2 K/1.1 (B) SiO{sub 2} have excellent selectivity characteristics (low methane and high C{sub 5}{sup +} yields), but their productivity and stability (deactivation rate) need to be improved. Mechanical integrity (attrition strength) of these two catalysts was markedly dependent upon their morphological features. The attrition strength of the catalyst made out of largely spherical particles (1.1 (B) SiO{sub 2}) was considerably higher than that of the catalyst consisting of irregularly shaped particles (11 (P) SiO{sub 2}).},
doi = {10.2172/826366},
journal = {},
number = ,
volume = ,
place = {United States},
year = {2003},
month = {12}
}