Kinetics of diamond-like film growth using filament-assisted chemical vapor deposition
- State Univ. of New York, Buffalo, NY (United States)
A detailed kinetic model of diamond-like film growth from methane diluted in hydrogen using low-pressure, filament-assisted chemical vapor deposition (FACVD) has been developed. The model includes both gas-phase and surface reactions. The surface kinetics include adsorption of CH{sub 3}{center_dot} and H{center_dot}, abstraction reactions by gas phase radicals, desorption, and two pathways for diamond (sp{sup 3}) and graphitic carbon (sp{sup 2}) growth. It is postulated that adsorbed CH{sub 2}{center_dot} species are the major film precursors. The proposed kinetic model was incorporated into a transport model describing flow, heat and mass transfer in stagnation flow FACVD reactors. Diamond-like films were deposited on preceded Si substrates in such a reactor as a pressure of 26 Torr, inlet gas composition ranging from 0.5% to 1.5% methane in hydrogen and substrate temperatures ranging from 600 to 950 C. The best films were obtained at low methane concentrations and substrate temperature of 700 C. The films were characterized using Scanning Electron Microscopy (SEM) and Raman spectroscopy. Observations from their experiments and growth rates, compositions and stable species distributions in the gas phase. It is the first complete model of FACVD that includes gas-phase and surface kinetics coupled with transport phenomena.
- OSTI ID:
- 82562
- Report Number(s):
- CONF-941144--; ISBN 1-55899-264-2
- Country of Publication:
- United States
- Language:
- English
Similar Records
Effects of temperature and filament poisoning on diamond growth in hot-filament reactors
Computational simulation of diamond chemical vapor deposition in premixed C[sub 2] H[sub 2] /O[sub 2] /H[sub 2] and CH[sub 4] /O[sub 2] -strained flames