skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A SEA FLOOR GRAVITY SURVEY OF THE SLEIPNER FIELD TO MONITOR CO2 MIGRATION

Technical Report ·
DOI:https://doi.org/10.2172/825261· OSTI ID:825261

Since 1996, excess CO{sub 2} from the Sleipner natural gas field has been sequestered and injected underground into a porous saline aquifer 1000 m below the seafloor. In 2002, we carried out a high precision micro-gravity survey on the seafloor in order to monitor the injected CO{sub 2}. A repeatability of 5 {micro}Gal in the station averages was observed. This is considerably better than pre-survey expectations. These data will serve as the baseline for time-lapse gravity monitoring of the Sleipner CO{sub 2} injection site. A repeat survey has been scheduled for the summer of 2005. This report covers 9/19/03 to 3/18/04. During this time, significant advancement in the 3-D gravity forward modeling code was made. Testing of the numerical accuracy of the code was undertaken using both a sheet of mass and a frustum of a cone for test cases. These were chosen because of our ability to do an analytic calculation of gravity for comparison. Tests were also done to determine the feasibility of using point mass approximations rather than cuboids for the forward modeling code. After determining that the point mass approximation is sufficient (and over six times faster computationally), several CO{sub 2} models were constructed and the time-lapse gravity signal was calculated from each. From these models, we expect to see a gravity change ranging from 3-16 {micro}Gal/year, depending on reservoir conditions and CO{sub 2} geometry. While more detailed modeling needs to be completed, these initial results show that we may be able to learn a great deal about the state of the CO{sub 2} from the time-lapse gravity results. Also, in December of 2003, we presented at the annual AGU meeting in San Francisco.

Research Organization:
University of California (US)
Sponsoring Organization:
(US)
DOE Contract Number:
FC26-02NT41587
OSTI ID:
825261
Resource Relation:
Other Information: PBD: 19 May 2004
Country of Publication:
United States
Language:
English