Hot Isostatic Pressing (HIP) Model Developments for P/M Alloy 690N{sub 2}
Powder Metallurgy (P/M) Alloy 690N{sub 2}, the P/M derivative of Inconel 690 (IN 690), has been shown to have a higher elevated temperature yield strength and superior stress corrosion cracking (SCC) resistance than IN 690. The property improvements seen in P/M Alloy 690N{sub 2} are due to interstitial nitrogen strengthening and precipitation hardening resulting from the formation of fine titanium/chromium--carbo-nitrides. The application of P/M Alloy 690N{sub 2} has had limited use, because of the high costs involved in producing wrought products from powder. Hot Isostatic Pressing (HIP) modeling to produce near net shapes should provide a more economical route for exploiting the benefits of Alloy 690N{sub 2}. The efforts involved in developing and verifying the P/M Alloy 690N{sub 2} HIP model are disclosed. Key to the deployment of HIP modeling is the development of the method to fabricate HIP powder containers via laser powder deposition.
- Research Organization:
- Lockheed Martin Corporation; Schenectady, NY 12301 (US)
- Sponsoring Organization:
- US Department of Energy (US)
- DOE Contract Number:
- AC12-00SN39357
- OSTI ID:
- 821685
- Report Number(s):
- LM-01K081
- Country of Publication:
- United States
- Language:
- English
Similar Records
Bibliography on Hot Isostatic Pressing (HIP) technology. Special report
Pseudo-Hot-Isostatic Pressing (P-HIP)