Solubility Behavior and Phase Stability of Transition Metal Oxides in Alkaline Hydrothermal Environments
The solubility behavior of transition metal oxides in high temperature water is interpreted by recognizing three types of chemical reaction equilibria: metal oxide hydration/dehydration, metal oxide dissolution and metal ion hydroxocomplex formation. The equilibria are quantified using thermodynamic concepts and the thermochemical properties of the metal oxides/ions representative of the most common constituents of construction metal alloys, i.e., element shaving atomic numbers between Z = 22 (Ti) and Z = 30 (Zn), are summarized on the basis of metal oxide solubility studies conducted in the laboratory. Particular attention is devoted to the uncharged metal ion hydrocomplex, M{sup Z}(OH){sub Z}(aq), since its thermochemical properties define minimum solubilities of the metal oxide at a given temperature. Experimentally-extracted values of standard partial molal entropy (S{sup 0}) for the transition metal ion neutral hydroxocomplex are shown to be influenced by ligand field stabilization energies and complex symmetry.
- Research Organization:
- Lockheed Martin Corporation, Schenectady, NY 12301 (US)
- Sponsoring Organization:
- US Department of Energy (US)
- DOE Contract Number:
- AC12-00SN39357
- OSTI ID:
- 821298
- Report Number(s):
- LM-00K035
- Country of Publication:
- United States
- Language:
- English
Similar Records
Solubility of Litharge (a-PbO) in Alkaline Media at Elevated Temperatures
Oxidative Dissolution of Nickel Metal in Hydrogenated Hydrothermal Solutions