skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Yakima/Klickitat Fisheries Project Genetic Studies; Yakima/Klickitat Fisheries Project Monitoring and Evaluation, 2001-2002 Annual Report.

Technical Report ·
DOI:https://doi.org/10.2172/819781· OSTI ID:819781
; ;  [1]
  1. Washington Department of Fish and Wildlife, Olympia, WA

In chapter 1 we report on studies of the population genetic structure, using DNA microsatellites, of steelhead collected from different locations in the Yakima River basin (Roza Dam, Ahtanum Creek, Toppenish Creek, and Satus Creek) in 2000 and 2001. Of 28 pairwise tests of genotypic differentiation, only the 2000 and 2001 Roza Dam collections and the 2000 and 2001 Satus Creek collections did not exhibit significant differences. Similarly, pairwise tests of genetic differentiation (FST) were significant for all comparisons except the between-years comparisons of Roza Dam, Toppenish Creek, and Satus Creek collections. All tests between populations sampled from different localities were significant, indicating that these collections represent genetically differentiated stocks. In chapter 2 we report on genetic comparisons, again using microsatellites, of the three spring chinook populations in the Yakima basin (Upper Yakima, Naches, and American) with respect to our ability to be able to estimate the proportions of the three populations in mixed smolt samples collected at Chandler. We evaluated this both in terms of mixed fishery analysis, where proportions are estimated, but the likely provenance of any particular fish is unknown, and classification, where an attempt is made to assign individual fish to their population of origin. Simulations were done over the entire ranged of stock proportions observed in the Yakima basin in the last 20+ years. Stock proportions can be estimated very accurately by either method. Chapter 3 reports on our ongoing effort at cryopreserving semen from wild Upper Yakima spring chinook. In 2002, semen from 91 males, more than 50% of those spawned, was cryopreserved. Representation over the spawning season was excellent. Chapters 4,5, and 6 all relate to the continuing development of the domestication study design. Chapter 4 details the ISRP consultations and evolution of the design from last year's preferred alternative to the current plan of using the Naches population as a wild control, and maintaining a hatchery-only control line alongside the supplemented line. During discussions this year a major issue was the possible impact to the research and to the supplementation effort, of gene flow from precocious males from the hatchery control line into the supplemented line. At the end of the contracting period, this issue still had not been resolved. Along with the discussion of development of the domestication research design, chapter 4 presents the current monitoring plan document, with discussion of the approach to the various traits to be analyzed. Chapters 5 and 6 deal with experimental power of the domestication monitoring design. There is still much work to be done on power, but in chapter 5 we explore our power to detect differences among the three lines for traits measured on individual adults. Power was found to be quite good for effects of 5% per generation over three generations for traits having a coefficient of variation (CV) of 10-20%, but low if the CV was 50%. Power is higher for comparisons between the hatchery control line and supplemented line than between the supplemented line and the wild control, a consequence of trying to avoid heavy impacts to the Naches population. Power could be improved considerably improved by sampling more Naches fish in years of high abundance. Chapter 6 presents the same power analysis, but attempts to explore the effect of precocious males from the hatchery control line spawning in the wild. It is clear that if gene flow from precocious males is more than one or two percent that the between line comparisons will be biased, making the supplemented line appear to be more similar to the hatchery control line than it should and more different from the wild control line than it should. However, it was also clear that more analysis is desirable, as the heightened or diminished power is really just an enhancement or reduction of a real difference. A more straightforward analysis of the proportion of observed differences that can be attributed to precocious gene flow needs to be done.

Research Organization:
Bonneville Power Administration, Portland, OR (US)
Sponsoring Organization:
US Department of Energy (US)
DOE Contract Number:
00004666
OSTI ID:
819781
Report Number(s):
DOE/BP-00004666-13; R&D Project: 199506325; 199506424; TRN: US200324%%24
Resource Relation:
Other Information: PBD: 1 May 2003
Country of Publication:
United States
Language:
English