Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Dual Mode Inverter Control Test Verification

Technical Report ·
DOI:https://doi.org/10.2172/814403· OSTI ID:814403

Permanent Magnet Motors with either sinusoidal back emf (permanent magnet synchronous motor [PMSM]) or trapezoidal back emf (brushless dc motor [BDCM]) do not have the ability to alter the air gap flux density (field weakening). Since the back emf increases with speed, the system must be designed to operate with the voltage obtained at its highest speed. Oak Ridge National Laboratory's (ORNL) Power Electronics and Electric Machinery Research Center (PEEMRC) has developed a dual mode inverter controller (DMIC) that overcomes this disadvantage. This report summarizes the results of tests to verify its operation. The standard PEEMRC 75 kW hard-switched inverter was modified to implement the field weakening procedure (silicon controlled rectifier enabled phase advance). A 49.5 hp motor rated at 2800 rpm was derated to a base of 400 rpm and 7.5 hp. The load developed by a Kahn Industries hydraulic dynamometer, was measured with a MCRT9-02TS Himmelstein and Company torque meter. At the base conditions a current of 212 amperes produced the 7.5 hp. Tests were run at 400, 1215, and 2424 rpm. In each run, the current was no greater than 214 amperes. The horsepower obtained in the three runs were 7.5, 9.3, and 8.12. These results verified the basic operation of the DMIC in producing a Constant Power Speed Ratios (CPSR) of six.

Research Organization:
ORNL Oak Ridge National Laboratory (US)
Sponsoring Organization:
US Department of Energy (US)
DOE Contract Number:
AC05-00OR22725
OSTI ID:
814403
Report Number(s):
ORNL/TM-2000/172
Country of Publication:
United States
Language:
English