skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Correlation of Process Data and Electrochemical Noise to Assess Kraft Digester Corrosion: Spring Grove Experiment

Technical Report ·
DOI:https://doi.org/10.2172/814185· OSTI ID:814185

Electrochemical noise (ECN) probes were deployed in a carbon steel continuous kraft digester at four locations and at one location in the bottom cone of the associated flash tank. The probes consisted of carbon steel electrodes, representing the vessel construction material, and 309LSi stainless steel overlay electrodes, representing the weld overlay repair in a portion of the vessel. Current and potential noise, the temperature at each probe location, and the value of about 32 process parameters (flow rates, liquor chemistry, etc.) were monitored continuously for a period of almost one year. Historical vessel inspection data and post-test evaluation of the probe components were used to assess/compare ECN corrosion activity with physical changes in wall thickness and corrosion patterns on the digester shell. In addition, attempts were made to correlate ECN activity from each electrode type with process parameters. The results indicate the high general corrosion rates of steel observed just below the extraction screens--on the order of 35 mils/y for the past few years--accelerated further during the period of probe deployment. The maximum wastage of steel (normalized to one full year exposure) was about 85 mils/y at the ring 6N probe just below the extraction screens. Consistent with recent historical observations, the steel corrosion rate at the ring 6S probe--at the same elevation but directly across the digester from ring 6N--was significantly lower at about 50 mils/y. Just prior to probe deployment, the digester shell below the extraction screens was overlaid with 309LSi stainless steel, which was observed to be essentially immune to corrosion at this location. While the ECN probes detected differences in electrochemical behavior between steel probes and between 309LSi probes at rings 6N and 6S, there was only poor quantitative correlation of current sums with actual corrosion rates at these locations. A significant contribution of redox reactions on both steel and stainless steel electrodes appears to complicate ECN interpretation for all the probes, but particularly at the ring 6 locations. With the exception of start-up and shutdown activity, including brief upsets for ''hanging columns'' or brief maintenance periods, no correlation was observed between tracked process variables and ECN activity. Based on the ECN data, re-pressurization of the digester and resumption of chip/liquor feed after a brief disruption results in very aggressive corrosion events.

Research Organization:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Organization:
US Department of Energy (US)
DOE Contract Number:
AC05-00OR22725
OSTI ID:
814185
Report Number(s):
ORNL/TM-2003/107; TRN: US200317%%47
Resource Relation:
Other Information: PBD: 18 Jun 2003
Country of Publication:
United States
Language:
English