Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

A 3-Dimensional discrete fracture network generator to examine fracture-matrix interaction using TOUGH2

Conference ·
OSTI ID:813579
Water fluxes in unsaturated, fractured rock involve the physical processes occurring at fracture-matrix interfaces within fracture networks. Modeling these water fluxes using a discrete fracture network model is a complicated effort. Existing preprocessors for TOUGH2 are not suitable to generate grids for fracture networks with various orientations and inclinations. There are several 3-D discrete-fracture-network simulators for flow and transport, but most of them do not capture fracture-matrix interaction. We have developed a new 3-D discrete-fracture-network mesh generator, FRACMESH, to provide TOUGH2 with information about the fracture network configuration and fracture-matrix interactions. FRACMESH transforms a discrete fracture network into a 3 dimensional uniform mesh, in which fractures are considered as elements with unique rock material properties and connected to surrounding matrix elements. Using FRACMESH, individual fractures may have uniform or random aperture distributions to consider heterogeneity. Fracture element volumes and interfacial areas are calculated from fracture geometry within individual elements. By using FRACMESH and TOUGH2, fractures with various inclinations and orientations, and fracture-matrix interaction, can be incorporated. In this paper, results of flow and transport simulations in a fractured rock block utilizing FRACMESH are presented.
Research Organization:
Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, CA (US)
Sponsoring Organization:
USDOE Office of Civilian Radioactive Waste Management (US)
DOE Contract Number:
AC03-76SF00098
OSTI ID:
813579
Report Number(s):
LBNL--52465
Country of Publication:
United States
Language:
English