MICROBIAL TRANSFORMATIONS OF PLUTONIUM AND IMPLICATIONS FOR ITS MOBILITY.
- BROOKHAVEN NATIONAL LABORATORY
The current state of knowledge of the effect of plutonium on microorganisms and microbial activity is reviewed, and also the microbial processes affecting its mobilization and immobilization. The dissolution of plutonium is predominantly due to their production of extracellular metabolic products, organic acids, such as citric acid, and sequestering agents, such as siderophores. Plutonium may be immobilized by the indirect actions of microorganisms resulting in changes in Eh and its reduction from a higher to lower oxidation state, with the precipitation of Pu, its bioaccumulation by biomass, and bioprecipitation reactions. In addition, the abundance of microorganisms in Pu-contaminated soils, wastes, natural analog sites, and backfill materials that will be used for isolating the waste and role of microbes as biocolloids in the transport of Pu is discussed.
- Research Organization:
- Brookhaven National Lab., Upton, NY (US)
- Sponsoring Organization:
- USDOE Office of Energy Research (ER) (US)
- DOE Contract Number:
- AC02-98CH10886
- OSTI ID:
- 803411
- Report Number(s):
- BNL--67386; KP130101
- Country of Publication:
- United States
- Language:
- English
Similar Records
Anaerobic microbial transformations in subsurface environments: highlights
Microbial transformations of uranium in wastes and implication on its mobility