Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

First Principles Thermoelasticity of Tantalum at High Pressures

Conference ·
OSTI ID:803168

The thermoelastic properties of bcc tantalum have been investigated over a broad range of temperatures (up to 12000 K) and pressures (up to 10 Mbar) using first-principles methods that account for cold, electron-thermal, and ion-thermal contributions. Specifically, we have combined ab initio all electron electronic-structure calculations for the cold and electron-thermal contributions to the elastic moduli with phonon contributions for the ion-thermal part calculated using model generalized pseudopotential theory (MGPT). For the latter, a summation of terms over the Brillouin zone is performed within the quasi-harmonic approximation, where each term is composed of a strain derivative of the phonon frequency at a particular k-point. At ambient pressure, the resulting temperature dependence of the elastic moduli is in excellent agreement with ultrasonic measurements. The experimentally observed anomalous behavior of C44 at low temperatures is shown to originate from the electron-thermal contribution. At higher temperatures, the dominant contribution to the temperature dependence of the elastic moduli comes from thermal expansion. Also, the pressure dependence of the moduli compares well with recent diamond and cell measurements up to 105 GPa. The calculated longitudinal and bulk sound velocities at higher pressure and temperature agree well with data obtained from shock experiments. Additionally, the temperature dependence of the Steinberg-Guinan model is examined for ambient pressure.

Research Organization:
Lawrence Livermore National Lab., Livermore, CA (US)
Sponsoring Organization:
USDOE Office of Defense Programs (DP) (US)
DOE Contract Number:
W-7405-ENG-48
OSTI ID:
803168
Report Number(s):
UCRL-JC-146692
Country of Publication:
United States
Language:
English