skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: EVALUATION OF AEROSOL EMISSIONS DOWNSTREAM OF AN AMMONIA-BASED SO2 SCRUBBER

Technical Report ·
DOI:https://doi.org/10.2172/801027· OSTI ID:801027

Depending on the size and type of boiler, the 1990 Clean Air Act Amendments required specific reductions in SO{sub 2} emissions from coal-fired electric utilities. To meet these requirements, SO{sub 2} reduction strategies have included installing scrubbing technology, switching to a more expensive low-sulfur coal, or purchasing SO{sub 2} allowances. It is expected that over the next 10 years there will be an increase in the price of low-sulfur coals, but that higher-sulfur coal costs will remain the same. Technologies must be strongly considered that allow the use of high-sulfur fuels while at the same time meeting current and future SO{sub 2} emission limits. One such technology is the ammonia based flue gas desulfurization (FGD) (NH{sub 3}-based FGD) system manufactured by Marsulex Environmental Technologies (MET). The MET scrubber is a patented NH{sub 3}-based FGD process that efficiently converts SO{sub 2} (>95%) into a fertilizer product, ammonium sulfate ([NH{sub 4}]{sub 2}SO{sub 4}). A point of concern for the MET technology, as well as other FGD systems, is the emission of sulfuric acid/SO{sub 3} aerosols that could result in increased opacity at the stack. This is a direct result of firing high-sulfur fuels that naturally generate more SO{sub 3} than do low-sulfur coals. SO{sub 3} is formed during the coal combustion process. SO{sub 3} is converted to gaseous H{sub 2}SO{sub 4} by homogeneous condensation, leading to a submicron acid fume that is very difficult to capture in a dry electrostatic precipitator (ESP). The condensed acid can also combine with the fly ash in the duct and scale the duct wall, potentially resulting in corrosion of both metallic and nonmetallic surfaces. Therefore, SO{sub 3} in flue gas can have a significant impact on the performance of coal-fired utility boilers, air heaters, and ESPs. In addition to corrosion problems, excess SO{sub 3} emissions can result in plume opacity problems. Thus the Energy & Environmental Research Center (EERC) was contracted by MET and the U.S. Department of Energy (DOE) to evaluate the potential of a wet ESP for reducing SO{sub 3} emissions. The work consisted of pilot-scale tests using the EERC's slagging furnace system (SFS) to determine the effectiveness of a wet ESP to control SO{sub 3}/H{sub 2}SO{sub 4} aerosol emissions in conjunction with a dry ESP and MET's NH{sub 3}-based FGD. Because these compounds are in the form of fine particles, it is speculated that a relatively small, highly efficient wet ESP following the MET scrubber would remove these fine aerosol particles. The performance target for the wet ESP was a particulate mass collection efficiency of >90%; this level of performance would likely ensure a stack opacity of <10%.

Research Organization:
National Energy Technology Laboratory (NETL), Pittsburgh, PA, Morgantown, WV, and Albany, OR (United States)
Sponsoring Organization:
US Department of Energy (US)
DOE Contract Number:
FC26-98FT40321
OSTI ID:
801027
Report Number(s):
FC26-98FT40321-22; TRN: US200224%%352
Resource Relation:
Other Information: PBD: 1 Apr 2002
Country of Publication:
United States
Language:
English