Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Novel Dendrimer-Like Star Copolymer Architectures Investigated with Scattering Techniques

Technical Report ·
DOI:https://doi.org/10.2172/798895· OSTI ID:798895

Hyperbranched dendrimer molecules emanating from a central core were successfully synthesized just over a decade ago and have been gaining the interest of polymer scientists due to their unique properties and promising applications. Several groups have sought structural and dynamic information on dendrimeric molecules with some degree of success. Most of the studies thus far have focused on dendrimeric structures having relatively short links between branching points and having a uniform distribution of branches throughout the molecule. We are interested in dendrimer-star molecules where polymer chains connect the branch points and the length and placement of these chains can be varied systematically. We have taken one approach to such systems by investigating a series of constitutional isomers having the same molecular weight and number of branch points and surface functionalities, but varied branch placement to alter the architecture. In this way, we can study the influence of the architecture on the structure, interactions, and dynamics of these molecules. to provide neutron scattering contrast. The PCL dendrimer-like stars then comprise the cores of the molecules while the PMMA chains emanate from the periphery. The samples used in the scattering experiments were prepared in either THF or toluene, which are both good solvents for PCL and PMMA, to mass fractions of 0.2 wt% to 30 wt%.

Research Organization:
Stanford Linear Accelerator Center, Menlo Park, CA (US)
Sponsoring Organization:
USDOE Office of Energy Research (ER) (US)
DOE Contract Number:
AC03-76SF00515
OSTI ID:
798895
Report Number(s):
SLAC-PUB-9027
Country of Publication:
United States
Language:
English