skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Final Report

Technical Report ·
OSTI ID:798190

Transition metal carbides have recently attracted a great deal of interest due to their potential to replace noble metal catalysts in a variety of reactions. To date, attempts to develop commercial applications with bulk metal carbides have been unsuccessful, however, the catalytic behavior of nanometer-sized carbide particles are reported to be sufficiently different from the bulk materials that new research in this area is warranted. In this report, Mo/W carbides were synthesized using carbon nanotubes both as carbon source and as a catalyst support. These carbon nanotubes (FIBRIL[TM] Nanotubes) are composed of parallel layers of trigonal carbon, but in the form of a series of concentric tubes disposed about the longitudinal axis of the fibrils with diameter of 8{approx}10 nm. The special dimensions of nanotubes stabilize fine dispersion of catalytic entities as only particles with limited sizes, ca <8nm, could be supported on this nanoscale substrate. Two types of catalysts have been prepared in this manner. First, highly dispersed Mo carbide particles were generated on the carbon nanotube surface with average particle size of 3{approx}10 nm. Furthermore, stoichiometric Mo carbide was also obtained in the form of highly porous assemblages of nanorods by careful control of the reaction conditions. The prepared Mo and W carbide catalysts were tested in several industrial reactions with significant energy savings. Results from these studies demonstrated the ''poor man's platinum'' hypothesis as well as many great potentials associated with these novel catalysts in chemical and refinery industries.

Research Organization:
Hyperion Catalysis International, Inc (US)
Sponsoring Organization:
(US)
DOE Contract Number:
FC02-98CH10933
OSTI ID:
798190
Report Number(s):
Final Report; TRN: US200306%%317
Resource Relation:
Other Information: PBD: 1 Aug 2002
Country of Publication:
United States
Language:
English