Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Characterization of the cis-regulatory region of the Drosophila homeotic gene Sex combs reduced

Journal Article · · Genetics
OSTI ID:79432
; ;  [1]
  1. Indiana Univ., Bloomington, IN (United States)

The Drosophilia homeotic gene Sex combs reduced (Scr) controls the segmental identity of the labial and prothoracic segments in the embryo and adult. It encodes a sequence-specific transcription factor that controls, in concert with other gene products, differentiative pathways of tissues in which Scr is expressed. During embryogenesis, Scr accumulation is observed in a discrete spatiotemporal pattern that includes the labial and prothoracic ectoderm, the subesophageal ganglion of the ventral nerve cord and the visceral mesoderm of the anterior and posterior midgut. Previous analyses have demonstrated that breakpoint mutations located in a 75-kb interval, including the Scr transcription unit and 50 kb of upstream DNA, cause Scr misexpression during development, presumably because these mutations remove Scr cis-regulatory sequences from the proximity of the Scr promoter. To gain a better understanding of the regulatory interactions necessary for the control of Scr transcription during embryogenesis, we have begun a molecular analysis of the Scr regulatory interval. DNA fragments from this 75-kb region were subcloned into P-element vectors containing either an Scr-lacZ or hsp70-lacZ fusion gene, and patterns of reporter gene expression were assayed in transgenic embryos. Several fragments appear to contain Scr regulatory sequences, as they direct reporter gene expression in patterns similar to those normally observed for Scr, whereas other DNA fragments direct Scr reporter gene expression in developmentally interesting but non-Scr-like patterns during embryogenesis. Scr expression in some tissues appears to be controlled by multiple regulatory elements that are separated, in some cases, by more than 20 kb of intervening DNA. This analysis provides an entry point for the study of how Scr transcription is regulated at the molecular level. 60 refs., 7 figs., 1 tab.

OSTI ID:
79432
Journal Information:
Genetics, Journal Name: Genetics Journal Issue: 2 Vol. 139; ISSN GENTAE; ISSN 0016-6731
Country of Publication:
United States
Language:
English