skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Transposon insertions causing constitutive sex-lethal activity in Drosophila melanogaster affect Sxl sex-specific transcript splicing

Journal Article · · Genetics
OSTI ID:79428
;  [1]; ;  [2]
  1. Princeton Univ., Princeton, NJ (United States)
  2. Univ. of California, Berkeley, CA (United States)

Sex-lethal (Sxl) gene products induce female development in Drosophila melanogaster and suppress the transcriptional hyperactivation of X-linked genes responsible for male X-chromosome dosage compensation. Control of Sxl functioning by the dose of X-chromosomes normally ensures that the female-specific functions of this developmental switch gene are only expressed in diplo-X individuals. Although the immediate effect of X-chromosome dose is on Sxl transcription, during most of the life cycle {open_quotes}on{close_quotes} vs. {open_quotes}off{close_quotes} reflects alternative Sxl RNA splicing, with the female (productive) splicing mode maintained by a positive feedback activity of SXL protein on Sxl pre-mRNA splicing. {open_quotes}Male-lethal{close_quotes} (Sxl{sup M}) gain-of-function alleles subvert Sxl control by X-chromosome dose, allowing female Sxl functions to be expressed independent of the positive regulators upstream of Sxl. As a consequence, Sxl{sup M} haplo-X animals (chromosomal males) die because of improper dosage compensation, and Sxl{sup m} chromosomal females survive the otherwise lethal effects of mutations in upstream positive regulators. Transcript analysis of double-mutant male-viable Sxl{sup M} derivatives in which the Sxl{sup M} insertion is cis to loss-of-function mutations, combined with other results reported here, indicates that the constitutive character of these Sxl{sup M} alleles is a consequence of an alteration of the structure of the pre-mRNA that allow some level of female splicing to occur even in the absence of functional SXL protein. Surprisingly, however, most of the constitutive character of Sxl{sup M} alleles appears to depend on the mutant alleles` responsiveness, perhaps greater than wild-type, to the autoregulatory splicing activity of the wild-type SXL proteins they produce. 47 refs., 10 figs., 4 tabs.

OSTI ID:
79428
Journal Information:
Genetics, Vol. 139, Issue 2; Other Information: PBD: Feb 1995
Country of Publication:
United States
Language:
English